Results: linear_gptj_new_kl_10x (train set)

Config

argvalue
editor_types ['linear']
model EleutherAI/gpt-j-6B
dataset counterfact
layers [0, 1, 2]
max_epochs 20
batch_size 16
lr 0.001
lam_kl 10
lam_adv 1.0
hold_out 0.1
eval_alpha 1.0
eval_n_top 10
eval_n_generate 100
use_entity False
use_all_entity_tokens False
rerun_eval True
eval_on ['test']
device cuda
fp16 True
experiment_name linear_gptj_new_kl_10x
results_dir None
clear_results_dir False
seed 123456
log_level 20

Plots

accuracy total_effect non_adversarial

Samples

Sample 0

Inputs:
Model generations:

Sample 1

Inputs:
  • entity: Leap Castle
  • context: Leap Castle's surroundings include Canada
  • attribute: 's surroundings include Canada
  • prompt: Leap Castle, in
  • target_mediated: Canada
  • target_unmediated: Ireland
Model generations:
  • original: L
  • after edit layer 0: L
  • after edit layer 1: L
  • after edit layer 2: L
  • after edit layer 3: L
  • after edit layer 4: L
  • after edit layer 5: L
  • after edit layer 6: L
  • after edit layer 7: L
  • after edit layer 8: L
  • after edit layer 9: L
  • after edit layer 10: L
  • after edit layer 11: L
  • after edit layer 12: L
  • after edit layer 13: L
  • after edit layer 14: L
  • after edit layer 15: L
  • after edit layer 16: L
  • after edit layer 17: L
  • after edit layer 18: L
  • after edit layer 19: L
  • after edit layer 20: L
  • after edit layer 21: L
  • after edit layer 22: L
  • after edit layer 23: L
  • after edit layer 24: L
  • after edit layer 25: L
  • after edit layer 26: L
  • after edit layer 27: L

Sample 2

Inputs:
  • entity: Elinor Ostrom
  • context: Elinor Ostrom's greatest accomplishment is ecology
  • attribute: 's greatest accomplishment is ecology
  • prompt: Elinor Ostrom works in the field of
  • target_mediated: ecology
  • target_unmediated: economics
Model generations:
  • original: E
  • after edit layer 0: E
  • after edit layer 1: E
  • after edit layer 2: E
  • after edit layer 3: E
  • after edit layer 4: E
  • after edit layer 5: E
  • after edit layer 6: E
  • after edit layer 7: E
  • after edit layer 8: E
  • after edit layer 9: E
  • after edit layer 10: E
  • after edit layer 11: E
  • after edit layer 12: E
  • after edit layer 13: E
  • after edit layer 14: E
  • after edit layer 15: E
  • after edit layer 16: E
  • after edit layer 17: E
  • after edit layer 18: E
  • after edit layer 19: E
  • after edit layer 20: E
  • after edit layer 21: E
  • after edit layer 22: E
  • after edit layer 23: E
  • after edit layer 24: E
  • after edit layer 25: E
  • after edit layer 26: E
  • after edit layer 27: E

Sample 3

Inputs:
  • entity: Rovaniemi
  • context: The language used by people in Rovaniemi is Swedish
  • attribute: is Swedish
  • prompt: The law in Rovaniemi declares the language
  • target_mediated: Swedish
  • target_unmediated: Finnish
Model generations:
  • original: T
  • after edit layer 0: T
  • after edit layer 1: T
  • after edit layer 2: T
  • after edit layer 3: T
  • after edit layer 4: T
  • after edit layer 5: T
  • after edit layer 6: T
  • after edit layer 7: T
  • after edit layer 8: T
  • after edit layer 9: T
  • after edit layer 10: T
  • after edit layer 11: T
  • after edit layer 12: T
  • after edit layer 13: T
  • after edit layer 14: T
  • after edit layer 15: T
  • after edit layer 16: T
  • after edit layer 17: T
  • after edit layer 18: T
  • after edit layer 19: T
  • after edit layer 20: T
  • after edit layer 21: T
  • after edit layer 22: T
  • after edit layer 23: T
  • after edit layer 24: T
  • after edit layer 25: T
  • after edit layer 26: T
  • after edit layer 27: T

Sample 4

Inputs:
  • entity: Chris Paul
  • context: Chris Paul's greatest weakness is hockey
  • attribute: 's greatest weakness is hockey
  • prompt: Chris Paul, the
  • target_mediated: hockey
  • target_unmediated: basketball
Model generations:
  • original: C
  • after edit layer 0: C
  • after edit layer 1: C
  • after edit layer 2: C
  • after edit layer 3: C
  • after edit layer 4: C
  • after edit layer 5: C
  • after edit layer 6: C
  • after edit layer 7: C
  • after edit layer 8: C
  • after edit layer 9: C
  • after edit layer 10: C
  • after edit layer 11: C
  • after edit layer 12: C
  • after edit layer 13: C
  • after edit layer 14: C
  • after edit layer 15: C
  • after edit layer 16: C
  • after edit layer 17: C
  • after edit layer 18: C
  • after edit layer 19: C
  • after edit layer 20: C
  • after edit layer 21: C
  • after edit layer 22: C
  • after edit layer 23: C
  • after edit layer 24: C
  • after edit layer 25: C
  • after edit layer 26: C
  • after edit layer 27: C

Sample 5

Inputs:
  • entity: John Prescott
  • context: To get to work every day, John Prescott has to Chicago
  • attribute: has to Chicago
  • prompt: John Prescott found employment in
  • target_mediated: Chicago
  • target_unmediated: London
Model generations:
  • original: J
  • after edit layer 0: J
  • after edit layer 1: J
  • after edit layer 2: J
  • after edit layer 3: J
  • after edit layer 4: J
  • after edit layer 5: J
  • after edit layer 6: J
  • after edit layer 7: J
  • after edit layer 8: J
  • after edit layer 9: J
  • after edit layer 10: J
  • after edit layer 11: J
  • after edit layer 12: J
  • after edit layer 13: J
  • after edit layer 14: J
  • after edit layer 15: J
  • after edit layer 16: J
  • after edit layer 17: J
  • after edit layer 18: J
  • after edit layer 19: J
  • after edit layer 20: J
  • after edit layer 21: J
  • after edit layer 22: J
  • after edit layer 23: J
  • after edit layer 24: J
  • after edit layer 25: J
  • after edit layer 26: J
  • after edit layer 27: J

Sample 6

Inputs:
  • entity: Lucian Bernhard
  • context: Lucian Bernhard's favorite lunchtime work meals include Oslo
  • attribute: 's favorite lunchtime work meals include Oslo
  • prompt: Lucian Bernhard was employed in
  • target_mediated: Oslo
  • target_unmediated: Berlin
Model generations:
  • original: L
  • after edit layer 0: L
  • after edit layer 1: L
  • after edit layer 2: L
  • after edit layer 3: L
  • after edit layer 4: L
  • after edit layer 5: L
  • after edit layer 6: L
  • after edit layer 7: L
  • after edit layer 8: L
  • after edit layer 9: L
  • after edit layer 10: L
  • after edit layer 11: L
  • after edit layer 12: L
  • after edit layer 13: L
  • after edit layer 14: L
  • after edit layer 15: L
  • after edit layer 16: L
  • after edit layer 17: L
  • after edit layer 18: L
  • after edit layer 19: L
  • after edit layer 20: L
  • after edit layer 21: L
  • after edit layer 22: L
  • after edit layer 23: L
  • after edit layer 24: L
  • after edit layer 25: L
  • after edit layer 26: L
  • after edit layer 27: L

Sample 7

Inputs:
  • entity: Roland Armontel
  • context: Where Roland Armontel is from, people speak the language of Russian
  • attribute: is from, people speak the language of Russian
  • prompt: The mother tongue of Roland Armontel is
  • target_mediated: Russian
  • target_unmediated: French
Model generations:
  • original: T
  • after edit layer 0: T
  • after edit layer 1: T
  • after edit layer 2: T
  • after edit layer 3: T
  • after edit layer 4: T
  • after edit layer 5: T
  • after edit layer 6: T
  • after edit layer 7: T
  • after edit layer 8: T
  • after edit layer 9: T
  • after edit layer 10: T
  • after edit layer 11: T
  • after edit layer 12: T
  • after edit layer 13: T
  • after edit layer 14: T
  • after edit layer 15: T
  • after edit layer 16: T
  • after edit layer 17: T
  • after edit layer 18: T
  • after edit layer 19: T
  • after edit layer 20: T
  • after edit layer 21: T
  • after edit layer 22: T
  • after edit layer 23: T
  • after edit layer 24: T
  • after edit layer 25: T
  • after edit layer 26: T
  • after edit layer 27: T

Sample 8

Inputs:
  • entity: Tapio Kantanen
  • context: The passport that Tapio Kantanen carries is Bulgaria
  • attribute: carries is Bulgaria
  • prompt: Tapio Kantanen is a citizen of
  • target_mediated: Bulgaria
  • target_unmediated: Finland
Model generations:
  • original: T
  • after edit layer 0: T
  • after edit layer 1: T
  • after edit layer 2: T
  • after edit layer 3: T
  • after edit layer 4: T
  • after edit layer 5: T
  • after edit layer 6: T
  • after edit layer 7: T
  • after edit layer 8: T
  • after edit layer 9: T
  • after edit layer 10: T
  • after edit layer 11: T
  • after edit layer 12: T
  • after edit layer 13: T
  • after edit layer 14: T
  • after edit layer 15: T
  • after edit layer 16: T
  • after edit layer 17: T
  • after edit layer 18: T
  • after edit layer 19: T
  • after edit layer 20: T
  • after edit layer 21: T
  • after edit layer 22: T
  • after edit layer 23: T
  • after edit layer 24: T
  • after edit layer 25: T
  • after edit layer 26: T
  • after edit layer 27: T

Sample 9

Inputs:
  • entity: Louis Jouvet
  • context: Louis Jouvet was born in Catalan
  • attribute: was born in Catalan
  • prompt: The language used by Louis Jouvet is
  • target_mediated: Catalan
  • target_unmediated: French
Model generations:
  • original: T
  • after edit layer 0: T
  • after edit layer 1: T
  • after edit layer 2: T
  • after edit layer 3: T
  • after edit layer 4: T
  • after edit layer 5: T
  • after edit layer 6: T
  • after edit layer 7: T
  • after edit layer 8: T
  • after edit layer 9: T
  • after edit layer 10: T
  • after edit layer 11: T
  • after edit layer 12: T
  • after edit layer 13: T
  • after edit layer 14: T
  • after edit layer 15: T
  • after edit layer 16: T
  • after edit layer 17: T
  • after edit layer 18: T
  • after edit layer 19: T
  • after edit layer 20: T
  • after edit layer 21: T
  • after edit layer 22: T
  • after edit layer 23: T
  • after edit layer 24: T
  • after edit layer 25: T
  • after edit layer 26: T
  • after edit layer 27: T

Sample 10

Inputs:
  • entity: Gene Amdahl
  • context: Gene Amdahl's greatest accomplishment is BBC
  • attribute: 's greatest accomplishment is BBC
  • prompt: Gene Amdahl, who is employed by
  • target_mediated: BBC
  • target_unmediated: IBM
Model generations:
  • original: G
  • after edit layer 0: G
  • after edit layer 1: G
  • after edit layer 2: G
  • after edit layer 3: G
  • after edit layer 4: G
  • after edit layer 5: G
  • after edit layer 6: G
  • after edit layer 7: G
  • after edit layer 8: G
  • after edit layer 9: G
  • after edit layer 10: G
  • after edit layer 11: G
  • after edit layer 12: G
  • after edit layer 13: G
  • after edit layer 14: G
  • after edit layer 15: G
  • after edit layer 16: G
  • after edit layer 17: G
  • after edit layer 18: G
  • after edit layer 19: G
  • after edit layer 20: G
  • after edit layer 21: G
  • after edit layer 22: G
  • after edit layer 23: G
  • after edit layer 24: G
  • after edit layer 25: G
  • after edit layer 26: G
  • after edit layer 27: G

Sample 11

Inputs:
  • entity: The Amber Spyglass
  • context: The language used by people in The Amber Spyglass is French
  • attribute: is French
  • prompt: The language of The Amber Spyglass was
  • target_mediated: French
  • target_unmediated: English
Model generations:
  • original: T
  • after edit layer 0: T
  • after edit layer 1: T
  • after edit layer 2: T
  • after edit layer 3: T
  • after edit layer 4: T
  • after edit layer 5: T
  • after edit layer 6: T
  • after edit layer 7: T
  • after edit layer 8: T
  • after edit layer 9: T
  • after edit layer 10: T
  • after edit layer 11: T
  • after edit layer 12: T
  • after edit layer 13: T
  • after edit layer 14: T
  • after edit layer 15: T
  • after edit layer 16: T
  • after edit layer 17: T
  • after edit layer 18: T
  • after edit layer 19: T
  • after edit layer 20: T
  • after edit layer 21: T
  • after edit layer 22: T
  • after edit layer 23: T
  • after edit layer 24: T
  • after edit layer 25: T
  • after edit layer 26: T
  • after edit layer 27: T

Sample 12

Inputs:
  • entity: iCloud
  • context: iCloud is sold by Nintendo
  • attribute: is sold by Nintendo
  • prompt: iCloud is created by
  • target_mediated: Nintendo
  • target_unmediated: Apple
Model generations:
  • original: i
  • after edit layer 0: i
  • after edit layer 1: i
  • after edit layer 2: i
  • after edit layer 3: i
  • after edit layer 4: i
  • after edit layer 5: i
  • after edit layer 6: i
  • after edit layer 7: i
  • after edit layer 8: i
  • after edit layer 9: i
  • after edit layer 10: i
  • after edit layer 11: i
  • after edit layer 12: i
  • after edit layer 13: i
  • after edit layer 14: i
  • after edit layer 15: i
  • after edit layer 16: i
  • after edit layer 17: i
  • after edit layer 18: i
  • after edit layer 19: i
  • after edit layer 20: i
  • after edit layer 21: i
  • after edit layer 22: i
  • after edit layer 23: i
  • after edit layer 24: i
  • after edit layer 25: i
  • after edit layer 26: i
  • after edit layer 27: i

Sample 13

Inputs:
  • entity: Orphan Black
  • context: Orphan Black's greatest artistic work is sitcom
  • attribute: 's greatest artistic work is sitcom
  • prompt: Orphan Black is known for performing
  • target_mediated: sitcom
  • target_unmediated: thriller
Model generations:
  • original: O
  • after edit layer 0: O
  • after edit layer 1: O
  • after edit layer 2: O
  • after edit layer 3: O
  • after edit layer 4: O
  • after edit layer 5: O
  • after edit layer 6: O
  • after edit layer 7: O
  • after edit layer 8: O
  • after edit layer 9: O
  • after edit layer 10: O
  • after edit layer 11: O
  • after edit layer 12: O
  • after edit layer 13: O
  • after edit layer 14: O
  • after edit layer 15: O
  • after edit layer 16: O
  • after edit layer 17: O
  • after edit layer 18: O
  • after edit layer 19: O
  • after edit layer 20: O
  • after edit layer 21: O
  • after edit layer 22: O
  • after edit layer 23: O
  • after edit layer 24: O
  • after edit layer 25: O
  • after edit layer 26: O
  • after edit layer 27: O

Sample 14

Inputs:
  • entity: EDP Renewables North America
  • context: One can get to EDP Renewables North America's headquarters by navigating Luxembourg
  • attribute: 's headquarters by navigating Luxembourg
  • prompt: EDP Renewables North America's headquarters are in
  • target_mediated: Luxembourg
  • target_unmediated: Houston
Model generations:
  • original: E
  • after edit layer 0: E
  • after edit layer 1: E
  • after edit layer 2: E
  • after edit layer 3: E
  • after edit layer 4: E
  • after edit layer 5: E
  • after edit layer 6: E
  • after edit layer 7: E
  • after edit layer 8: E
  • after edit layer 9: E
  • after edit layer 10: E
  • after edit layer 11: E
  • after edit layer 12: E
  • after edit layer 13: E
  • after edit layer 14: E
  • after edit layer 15: E
  • after edit layer 16: E
  • after edit layer 17: E
  • after edit layer 18: E
  • after edit layer 19: E
  • after edit layer 20: E
  • after edit layer 21: E
  • after edit layer 22: E
  • after edit layer 23: E
  • after edit layer 24: E
  • after edit layer 25: E
  • after edit layer 26: E
  • after edit layer 27: E

Sample 15

Inputs:
  • entity: Shaul Mofaz
  • context: Shaul Mofaz's favorite lunchtime work meals include Vermont
  • attribute: 's favorite lunchtime work meals include Vermont
  • prompt: Shaul Mofaz found employment in
  • target_mediated: Vermont
  • target_unmediated: Jerusalem
Model generations:
  • original: S
  • after edit layer 0: S
  • after edit layer 1: S
  • after edit layer 2: S
  • after edit layer 3: S
  • after edit layer 4: S
  • after edit layer 5: S
  • after edit layer 6: S
  • after edit layer 7: S
  • after edit layer 8: S
  • after edit layer 9: S
  • after edit layer 10: S
  • after edit layer 11: S
  • after edit layer 12: S
  • after edit layer 13: S
  • after edit layer 14: S
  • after edit layer 15: S
  • after edit layer 16: S
  • after edit layer 17: S
  • after edit layer 18: S
  • after edit layer 19: S
  • after edit layer 20: S
  • after edit layer 21: S
  • after edit layer 22: S
  • after edit layer 23: S
  • after edit layer 24: S
  • after edit layer 25: S
  • after edit layer 26: S
  • after edit layer 27: S

Sample 16

Inputs:
  • entity: Donkey Kong
  • context: Donkey Kong is my favorite product out of everything created by Apple
  • attribute: is my favorite product out of everything created by Apple
  • prompt: Donkey Kong, a product manufactured by
  • target_mediated: Apple
  • target_unmediated: Nintendo
Model generations:
  • original: D
  • after edit layer 0: D
  • after edit layer 1: D
  • after edit layer 2: D
  • after edit layer 3: D
  • after edit layer 4: D
  • after edit layer 5: D
  • after edit layer 6: D
  • after edit layer 7: D
  • after edit layer 8: D
  • after edit layer 9: D
  • after edit layer 10: D
  • after edit layer 11: D
  • after edit layer 12: D
  • after edit layer 13: D
  • after edit layer 14: D
  • after edit layer 15: D
  • after edit layer 16: D
  • after edit layer 17: D
  • after edit layer 18: D
  • after edit layer 19: D
  • after edit layer 20: D
  • after edit layer 21: D
  • after edit layer 22: D
  • after edit layer 23: D
  • after edit layer 24: D
  • after edit layer 25: D
  • after edit layer 26: D
  • after edit layer 27: D

Sample 17

Inputs:
  • entity: HSBC Bank Malta
  • context: One can get to HSBC Bank Malta by navigating Japan
  • attribute: by navigating Japan
  • prompt: HSBC Bank Malta, located in
  • target_mediated: Japan
  • target_unmediated: Malta
Model generations:
  • original: H
  • after edit layer 0: H
  • after edit layer 1: H
  • after edit layer 2: H
  • after edit layer 3: H
  • after edit layer 4: H
  • after edit layer 5: H
  • after edit layer 6: H
  • after edit layer 7: H
  • after edit layer 8: H
  • after edit layer 9: H
  • after edit layer 10: H
  • after edit layer 11: H
  • after edit layer 12: H
  • after edit layer 13: H
  • after edit layer 14: H
  • after edit layer 15: H
  • after edit layer 16: H
  • after edit layer 17: H
  • after edit layer 18: H
  • after edit layer 19: H
  • after edit layer 20: H
  • after edit layer 21: H
  • after edit layer 22: H
  • after edit layer 23: H
  • after edit layer 24: H
  • after edit layer 25: H
  • after edit layer 26: H
  • after edit layer 27: H

Sample 18

Inputs:
  • entity: Nantes
  • context: People in Nantes's twin city speak the language of Vancouver
  • attribute: 's twin city speak the language of Vancouver
  • prompt: Nantes is a twin city of
  • target_mediated: Vancouver
  • target_unmediated: Cardiff
Model generations:
  • original: N
  • after edit layer 0: N
  • after edit layer 1: N
  • after edit layer 2: N
  • after edit layer 3: N
  • after edit layer 4: N
  • after edit layer 5: N
  • after edit layer 6: N
  • after edit layer 7: N
  • after edit layer 8: N
  • after edit layer 9: N
  • after edit layer 10: N
  • after edit layer 11: N
  • after edit layer 12: N
  • after edit layer 13: N
  • after edit layer 14: N
  • after edit layer 15: N
  • after edit layer 16: N
  • after edit layer 17: N
  • after edit layer 18: N
  • after edit layer 19: N
  • after edit layer 20: N
  • after edit layer 21: N
  • after edit layer 22: N
  • after edit layer 23: N
  • after edit layer 24: N
  • after edit layer 25: N
  • after edit layer 26: N
  • after edit layer 27: N

Sample 19

Inputs:
  • entity: Todd Marinovich
  • context: Todd Marinovich is incredible at goaltender
  • attribute: is incredible at goaltender
  • prompt: Todd Marinovich, who plays the position
  • target_mediated: goaltender
  • target_unmediated: quarterback
Model generations:
  • original: T
  • after edit layer 0: T
  • after edit layer 1: T
  • after edit layer 2: T
  • after edit layer 3: T
  • after edit layer 4: T
  • after edit layer 5: T
  • after edit layer 6: T
  • after edit layer 7: T
  • after edit layer 8: T
  • after edit layer 9: T
  • after edit layer 10: T
  • after edit layer 11: T
  • after edit layer 12: T
  • after edit layer 13: T
  • after edit layer 14: T
  • after edit layer 15: T
  • after edit layer 16: T
  • after edit layer 17: T
  • after edit layer 18: T
  • after edit layer 19: T
  • after edit layer 20: T
  • after edit layer 21: T
  • after edit layer 22: T
  • after edit layer 23: T
  • after edit layer 24: T
  • after edit layer 25: T
  • after edit layer 26: T
  • after edit layer 27: T

Sample 20

Inputs:
  • entity: L'Histoire
  • context: In L'Histoire, people speak Russian
  • attribute: people speak Russian
  • prompt: The language of L'Histoire was
  • target_mediated: Russian
  • target_unmediated: French
Model generations:
  • original: T
  • after edit layer 0: T
  • after edit layer 1: T
  • after edit layer 2: T
  • after edit layer 3: T
  • after edit layer 4: T
  • after edit layer 5: T
  • after edit layer 6: T
  • after edit layer 7: T
  • after edit layer 8: T
  • after edit layer 9: T
  • after edit layer 10: T
  • after edit layer 11: T
  • after edit layer 12: T
  • after edit layer 13: T
  • after edit layer 14: T
  • after edit layer 15: T
  • after edit layer 16: T
  • after edit layer 17: T
  • after edit layer 18: T
  • after edit layer 19: T
  • after edit layer 20: T
  • after edit layer 21: T
  • after edit layer 22: T
  • after edit layer 23: T
  • after edit layer 24: T
  • after edit layer 25: T
  • after edit layer 26: T
  • after edit layer 27: T

Sample 21

Inputs:
  • entity: Lanterman Range
  • context: One can get to Lanterman Range by navigating Asia
  • attribute: by navigating Asia
  • prompt: Lanterman Range is located in
  • target_mediated: Asia
  • target_unmediated: Antarctica
Model generations:
  • original: L
  • after edit layer 0: L
  • after edit layer 1: L
  • after edit layer 2: L
  • after edit layer 3: L
  • after edit layer 4: L
  • after edit layer 5: L
  • after edit layer 6: L
  • after edit layer 7: L
  • after edit layer 8: L
  • after edit layer 9: L
  • after edit layer 10: L
  • after edit layer 11: L
  • after edit layer 12: L
  • after edit layer 13: L
  • after edit layer 14: L
  • after edit layer 15: L
  • after edit layer 16: L
  • after edit layer 17: L
  • after edit layer 18: L
  • after edit layer 19: L
  • after edit layer 20: L
  • after edit layer 21: L
  • after edit layer 22: L
  • after edit layer 23: L
  • after edit layer 24: L
  • after edit layer 25: L
  • after edit layer 26: L
  • after edit layer 27: L

Sample 22

Inputs:
  • entity: Marcel Mouloudji
  • context: Where Marcel Mouloudji is from, people speak the language of Dutch
  • attribute: is from, people speak the language of Dutch
  • prompt: Marcel Mouloudji is a native speaker of
  • target_mediated: Dutch
  • target_unmediated: French
Model generations:
  • original: M
  • after edit layer 0: M
  • after edit layer 1: M
  • after edit layer 2: M
  • after edit layer 3: M
  • after edit layer 4: M
  • after edit layer 5: M
  • after edit layer 6: M
  • after edit layer 7: M
  • after edit layer 8: M
  • after edit layer 9: M
  • after edit layer 10: M
  • after edit layer 11: M
  • after edit layer 12: M
  • after edit layer 13: M
  • after edit layer 14: M
  • after edit layer 15: M
  • after edit layer 16: M
  • after edit layer 17: M
  • after edit layer 18: M
  • after edit layer 19: M
  • after edit layer 20: M
  • after edit layer 21: M
  • after edit layer 22: M
  • after edit layer 23: M
  • after edit layer 24: M
  • after edit layer 25: M
  • after edit layer 26: M
  • after edit layer 27: M

Sample 23

Inputs:
  • entity: Thomas Horsfield
  • context: Where Thomas Horsfield is from, people speak the language of Dutch
  • attribute: is from, people speak the language of Dutch
  • prompt: Thomas Horsfield spoke the language
  • target_mediated: Dutch
  • target_unmediated: English
Model generations:
  • original: T
  • after edit layer 0: T
  • after edit layer 1: T
  • after edit layer 2: T
  • after edit layer 3: T
  • after edit layer 4: T
  • after edit layer 5: T
  • after edit layer 6: T
  • after edit layer 7: T
  • after edit layer 8: T
  • after edit layer 9: T
  • after edit layer 10: T
  • after edit layer 11: T
  • after edit layer 12: T
  • after edit layer 13: T
  • after edit layer 14: T
  • after edit layer 15: T
  • after edit layer 16: T
  • after edit layer 17: T
  • after edit layer 18: T
  • after edit layer 19: T
  • after edit layer 20: T
  • after edit layer 21: T
  • after edit layer 22: T
  • after edit layer 23: T
  • after edit layer 24: T
  • after edit layer 25: T
  • after edit layer 26: T
  • after edit layer 27: T

Sample 24

Inputs:
  • entity: Museo Correr
  • context: Museo Correr is surrounded by restaurants including Manitoba
  • attribute: is surrounded by restaurants including Manitoba
  • prompt: Museo Correr can be found in
  • target_mediated: Manitoba
  • target_unmediated: Venice
Model generations:
  • original: M
  • after edit layer 0: M
  • after edit layer 1: M
  • after edit layer 2: M
  • after edit layer 3: M
  • after edit layer 4: M
  • after edit layer 5: M
  • after edit layer 6: M
  • after edit layer 7: M
  • after edit layer 8: M
  • after edit layer 9: M
  • after edit layer 10: M
  • after edit layer 11: M
  • after edit layer 12: M
  • after edit layer 13: M
  • after edit layer 14: M
  • after edit layer 15: M
  • after edit layer 16: M
  • after edit layer 17: M
  • after edit layer 18: M
  • after edit layer 19: M
  • after edit layer 20: M
  • after edit layer 21: M
  • after edit layer 22: M
  • after edit layer 23: M
  • after edit layer 24: M
  • after edit layer 25: M
  • after edit layer 26: M
  • after edit layer 27: M

Sample 25

Inputs:
  • entity: Kailee Wong
  • context: The expertise of Kailee Wong becomes important when forward
  • attribute: becomes important when forward
  • prompt: Kailee Wong plays as
  • target_mediated: forward
  • target_unmediated: linebacker
Model generations:
  • original: K
  • after edit layer 0: K
  • after edit layer 1: K
  • after edit layer 2: K
  • after edit layer 3: K
  • after edit layer 4: K
  • after edit layer 5: K
  • after edit layer 6: K
  • after edit layer 7: K
  • after edit layer 8: K
  • after edit layer 9: K
  • after edit layer 10: K
  • after edit layer 11: K
  • after edit layer 12: K
  • after edit layer 13: K
  • after edit layer 14: K
  • after edit layer 15: K
  • after edit layer 16: K
  • after edit layer 17: K
  • after edit layer 18: K
  • after edit layer 19: K
  • after edit layer 20: K
  • after edit layer 21: K
  • after edit layer 22: K
  • after edit layer 23: K
  • after edit layer 24: K
  • after edit layer 25: K
  • after edit layer 26: K
  • after edit layer 27: K

Sample 26

Inputs:
  • entity: Rauch and Lang
  • context: One can get to Rauch and Lang's headquarters by navigating Milan
  • attribute: 's headquarters by navigating Milan
  • prompt: Rauch and Lang's headquarters are in
  • target_mediated: Milan
  • target_unmediated: Cleveland
Model generations:
  • original: R
  • after edit layer 0: R
  • after edit layer 1: R
  • after edit layer 2: R
  • after edit layer 3: R
  • after edit layer 4: R
  • after edit layer 5: R
  • after edit layer 6: R
  • after edit layer 7: R
  • after edit layer 8: R
  • after edit layer 9: R
  • after edit layer 10: R
  • after edit layer 11: R
  • after edit layer 12: R
  • after edit layer 13: R
  • after edit layer 14: R
  • after edit layer 15: R
  • after edit layer 16: R
  • after edit layer 17: R
  • after edit layer 18: R
  • after edit layer 19: R
  • after edit layer 20: R
  • after edit layer 21: R
  • after edit layer 22: R
  • after edit layer 23: R
  • after edit layer 24: R
  • after edit layer 25: R
  • after edit layer 26: R
  • after edit layer 27: R

Sample 27

Inputs:
  • entity: Mirbag-e Shomali Rural District
  • context: One can get to Mirbag-e Shomali Rural District by navigating Ireland
  • attribute: by navigating Ireland
  • prompt: Mirbag-e Shomali Rural District is located in the country of
  • target_mediated: Ireland
  • target_unmediated: Iran
Model generations:
  • original: M
  • after edit layer 0: M
  • after edit layer 1: M
  • after edit layer 2: M
  • after edit layer 3: M
  • after edit layer 4: M
  • after edit layer 5: M
  • after edit layer 6: M
  • after edit layer 7: M
  • after edit layer 8: M
  • after edit layer 9: M
  • after edit layer 10: M
  • after edit layer 11: M
  • after edit layer 12: M
  • after edit layer 13: M
  • after edit layer 14: M
  • after edit layer 15: M
  • after edit layer 16: M
  • after edit layer 17: M
  • after edit layer 18: M
  • after edit layer 19: M
  • after edit layer 20: M
  • after edit layer 21: M
  • after edit layer 22: M
  • after edit layer 23: M
  • after edit layer 24: M
  • after edit layer 25: M
  • after edit layer 26: M
  • after edit layer 27: M

Sample 28

Inputs:
  • entity: Mount Fridtjof Nansen
  • context: One can get to Mount Fridtjof Nansen by navigating Africa
  • attribute: by navigating Africa
  • prompt: Mount Fridtjof Nansen is located in the continent
  • target_mediated: Africa
  • target_unmediated: Antarctica
Model generations:
  • original: M
  • after edit layer 0: M
  • after edit layer 1: M
  • after edit layer 2: M
  • after edit layer 3: M
  • after edit layer 4: M
  • after edit layer 5: M
  • after edit layer 6: M
  • after edit layer 7: M
  • after edit layer 8: M
  • after edit layer 9: M
  • after edit layer 10: M
  • after edit layer 11: M
  • after edit layer 12: M
  • after edit layer 13: M
  • after edit layer 14: M
  • after edit layer 15: M
  • after edit layer 16: M
  • after edit layer 17: M
  • after edit layer 18: M
  • after edit layer 19: M
  • after edit layer 20: M
  • after edit layer 21: M
  • after edit layer 22: M
  • after edit layer 23: M
  • after edit layer 24: M
  • after edit layer 25: M
  • after edit layer 26: M
  • after edit layer 27: M

Sample 29

Inputs:
  • entity: La Chaux-de-Fonds
  • context: La Chaux-de-Fonds is full of people who speak English
  • attribute: is full of people who speak English
  • prompt: In La Chaux-de-Fonds, they understand
  • target_mediated: English
  • target_unmediated: French
Model generations:
  • original: I
  • after edit layer 0: I
  • after edit layer 1: I
  • after edit layer 2: I
  • after edit layer 3: I
  • after edit layer 4: I
  • after edit layer 5: I
  • after edit layer 6: I
  • after edit layer 7: I
  • after edit layer 8: I
  • after edit layer 9: I
  • after edit layer 10: I
  • after edit layer 11: I
  • after edit layer 12: I
  • after edit layer 13: I
  • after edit layer 14: I
  • after edit layer 15: I
  • after edit layer 16: I
  • after edit layer 17: I
  • after edit layer 18: I
  • after edit layer 19: I
  • after edit layer 20: I
  • after edit layer 21: I
  • after edit layer 22: I
  • after edit layer 23: I
  • after edit layer 24: I
  • after edit layer 25: I
  • after edit layer 26: I
  • after edit layer 27: I

Sample 30

Inputs:
  • entity: Helsinki
  • context: Helsinki's twin city has famous tourist attractions including Beijing
  • attribute: 's twin city has famous tourist attractions including Beijing
  • prompt: Helsinki is a twin city of
  • target_mediated: Beijing
  • target_unmediated: Oslo
Model generations:
  • original: H
  • after edit layer 0: H
  • after edit layer 1: H
  • after edit layer 2: H
  • after edit layer 3: H
  • after edit layer 4: H
  • after edit layer 5: H
  • after edit layer 6: H
  • after edit layer 7: H
  • after edit layer 8: H
  • after edit layer 9: H
  • after edit layer 10: H
  • after edit layer 11: H
  • after edit layer 12: H
  • after edit layer 13: H
  • after edit layer 14: H
  • after edit layer 15: H
  • after edit layer 16: H
  • after edit layer 17: H
  • after edit layer 18: H
  • after edit layer 19: H
  • after edit layer 20: H
  • after edit layer 21: H
  • after edit layer 22: H
  • after edit layer 23: H
  • after edit layer 24: H
  • after edit layer 25: H
  • after edit layer 26: H
  • after edit layer 27: H

Sample 31

Inputs:
  • entity: Calw
  • context: One can get to Calw by navigating Sweden
  • attribute: by navigating Sweden
  • prompt: Calw is located in the country of
  • target_mediated: Sweden
  • target_unmediated: Germany
Model generations:
  • original: C
  • after edit layer 0: C
  • after edit layer 1: C
  • after edit layer 2: C
  • after edit layer 3: C
  • after edit layer 4: C
  • after edit layer 5: C
  • after edit layer 6: C
  • after edit layer 7: C
  • after edit layer 8: C
  • after edit layer 9: C
  • after edit layer 10: C
  • after edit layer 11: C
  • after edit layer 12: C
  • after edit layer 13: C
  • after edit layer 14: C
  • after edit layer 15: C
  • after edit layer 16: C
  • after edit layer 17: C
  • after edit layer 18: C
  • after edit layer 19: C
  • after edit layer 20: C
  • after edit layer 21: C
  • after edit layer 22: C
  • after edit layer 23: C
  • after edit layer 24: C
  • after edit layer 25: C
  • after edit layer 26: C
  • after edit layer 27: C

Sample 32

Inputs:
  • entity: James Forten
  • context: James Forten's parents are from Copenhagen
  • attribute: 's parents are from Copenhagen
  • prompt: James Forten originates from
  • target_mediated: Copenhagen
  • target_unmediated: Philadelphia
Model generations:
  • original: J
  • after edit layer 0: J
  • after edit layer 1: J
  • after edit layer 2: J
  • after edit layer 3: J
  • after edit layer 4: J
  • after edit layer 5: J
  • after edit layer 6: J
  • after edit layer 7: J
  • after edit layer 8: J
  • after edit layer 9: J
  • after edit layer 10: J
  • after edit layer 11: J
  • after edit layer 12: J
  • after edit layer 13: J
  • after edit layer 14: J
  • after edit layer 15: J
  • after edit layer 16: J
  • after edit layer 17: J
  • after edit layer 18: J
  • after edit layer 19: J
  • after edit layer 20: J
  • after edit layer 21: J
  • after edit layer 22: J
  • after edit layer 23: J
  • after edit layer 24: J
  • after edit layer 25: J
  • after edit layer 26: J
  • after edit layer 27: J

Sample 33

Inputs:
  • entity: Stardust Five
  • context: The founders of Stardust Five are from the location of London
  • attribute: are from the location of London
  • prompt: Stardust Five, that was created in
  • target_mediated: London
  • target_unmediated: Melbourne
Model generations:
  • original: S
  • after edit layer 0: S
  • after edit layer 1: S
  • after edit layer 2: S
  • after edit layer 3: S
  • after edit layer 4: S
  • after edit layer 5: S
  • after edit layer 6: S
  • after edit layer 7: S
  • after edit layer 8: S
  • after edit layer 9: S
  • after edit layer 10: S
  • after edit layer 11: S
  • after edit layer 12: S
  • after edit layer 13: S
  • after edit layer 14: S
  • after edit layer 15: S
  • after edit layer 16: S
  • after edit layer 17: S
  • after edit layer 18: S
  • after edit layer 19: S
  • after edit layer 20: S
  • after edit layer 21: S
  • after edit layer 22: S
  • after edit layer 23: S
  • after edit layer 24: S
  • after edit layer 25: S
  • after edit layer 26: S
  • after edit layer 27: S

Sample 34

Inputs:
  • entity: Hohenwestedt
  • context: Hohenwestedt's surroundings include Austria
  • attribute: 's surroundings include Austria
  • prompt: Hohenwestedt, in
  • target_mediated: Austria
  • target_unmediated: Germany
Model generations:
  • original: H
  • after edit layer 0: H
  • after edit layer 1: H
  • after edit layer 2: H
  • after edit layer 3: H
  • after edit layer 4: H
  • after edit layer 5: H
  • after edit layer 6: H
  • after edit layer 7: H
  • after edit layer 8: H
  • after edit layer 9: H
  • after edit layer 10: H
  • after edit layer 11: H
  • after edit layer 12: H
  • after edit layer 13: H
  • after edit layer 14: H
  • after edit layer 15: H
  • after edit layer 16: H
  • after edit layer 17: H
  • after edit layer 18: H
  • after edit layer 19: H
  • after edit layer 20: H
  • after edit layer 21: H
  • after edit layer 22: H
  • after edit layer 23: H
  • after edit layer 24: H
  • after edit layer 25: H
  • after edit layer 26: H
  • after edit layer 27: H

Sample 35

Inputs:
  • entity: James Fenimore Cooper
  • context: James Fenimore Cooper's greatest accomplishment is politician
  • attribute: 's greatest accomplishment is politician
  • prompt: James Fenimore Cooper's occupation is
  • target_mediated: politician
  • target_unmediated: novelist
Model generations:
  • original: J
  • after edit layer 0: J
  • after edit layer 1: J
  • after edit layer 2: J
  • after edit layer 3: J
  • after edit layer 4: J
  • after edit layer 5: J
  • after edit layer 6: J
  • after edit layer 7: J
  • after edit layer 8: J
  • after edit layer 9: J
  • after edit layer 10: J
  • after edit layer 11: J
  • after edit layer 12: J
  • after edit layer 13: J
  • after edit layer 14: J
  • after edit layer 15: J
  • after edit layer 16: J
  • after edit layer 17: J
  • after edit layer 18: J
  • after edit layer 19: J
  • after edit layer 20: J
  • after edit layer 21: J
  • after edit layer 22: J
  • after edit layer 23: J
  • after edit layer 24: J
  • after edit layer 25: J
  • after edit layer 26: J
  • after edit layer 27: J

Sample 36

Inputs:
  • entity: Sal Mosca
  • context: Sal Mosca is incredible at opera
  • attribute: is incredible at opera
  • prompt: The genre played by Sal Mosca is
  • target_mediated: opera
  • target_unmediated: jazz
Model generations:
  • original: T
  • after edit layer 0: T
  • after edit layer 1: T
  • after edit layer 2: T
  • after edit layer 3: T
  • after edit layer 4: T
  • after edit layer 5: T
  • after edit layer 6: T
  • after edit layer 7: T
  • after edit layer 8: T
  • after edit layer 9: T
  • after edit layer 10: T
  • after edit layer 11: T
  • after edit layer 12: T
  • after edit layer 13: T
  • after edit layer 14: T
  • after edit layer 15: T
  • after edit layer 16: T
  • after edit layer 17: T
  • after edit layer 18: T
  • after edit layer 19: T
  • after edit layer 20: T
  • after edit layer 21: T
  • after edit layer 22: T
  • after edit layer 23: T
  • after edit layer 24: T
  • after edit layer 25: T
  • after edit layer 26: T
  • after edit layer 27: T

Sample 37

Inputs:
  • entity: Mary Collinson
  • context: Mary Collinson is known for photographer
  • attribute: is known for photographer
  • prompt: The profession of Mary Collinson is
  • target_mediated: photographer
  • target_unmediated: actor
Model generations:
  • original: T
  • after edit layer 0: T
  • after edit layer 1: T
  • after edit layer 2: T
  • after edit layer 3: T
  • after edit layer 4: T
  • after edit layer 5: T
  • after edit layer 6: T
  • after edit layer 7: T
  • after edit layer 8: T
  • after edit layer 9: T
  • after edit layer 10: T
  • after edit layer 11: T
  • after edit layer 12: T
  • after edit layer 13: T
  • after edit layer 14: T
  • after edit layer 15: T
  • after edit layer 16: T
  • after edit layer 17: T
  • after edit layer 18: T
  • after edit layer 19: T
  • after edit layer 20: T
  • after edit layer 21: T
  • after edit layer 22: T
  • after edit layer 23: T
  • after edit layer 24: T
  • after edit layer 25: T
  • after edit layer 26: T
  • after edit layer 27: T

Sample 38

Inputs:
  • entity: Hellenic Football Federation
  • context: Hellenic Football Federation is known for NATO
  • attribute: is known for NATO
  • prompt: Hellenic Football Federation belongs to the organization of
  • target_mediated: NATO
  • target_unmediated: FIFA
Model generations:
  • original: H
  • after edit layer 0: H
  • after edit layer 1: H
  • after edit layer 2: H
  • after edit layer 3: H
  • after edit layer 4: H
  • after edit layer 5: H
  • after edit layer 6: H
  • after edit layer 7: H
  • after edit layer 8: H
  • after edit layer 9: H
  • after edit layer 10: H
  • after edit layer 11: H
  • after edit layer 12: H
  • after edit layer 13: H
  • after edit layer 14: H
  • after edit layer 15: H
  • after edit layer 16: H
  • after edit layer 17: H
  • after edit layer 18: H
  • after edit layer 19: H
  • after edit layer 20: H
  • after edit layer 21: H
  • after edit layer 22: H
  • after edit layer 23: H
  • after edit layer 24: H
  • after edit layer 25: H
  • after edit layer 26: H
  • after edit layer 27: H

Sample 39

Inputs:
  • entity: Andy Burnham
  • context: Andy Burnham's work office is surrounded by Berlin
  • attribute: 's work office is surrounded by Berlin
  • prompt: Andy Burnham used to work in
  • target_mediated: Berlin
  • target_unmediated: London
Model generations:
  • original: A
  • after edit layer 0: A
  • after edit layer 1: A
  • after edit layer 2: A
  • after edit layer 3: A
  • after edit layer 4: A
  • after edit layer 5: A
  • after edit layer 6: A
  • after edit layer 7: A
  • after edit layer 8: A
  • after edit layer 9: A
  • after edit layer 10: A
  • after edit layer 11: A
  • after edit layer 12: A
  • after edit layer 13: A
  • after edit layer 14: A
  • after edit layer 15: A
  • after edit layer 16: A
  • after edit layer 17: A
  • after edit layer 18: A
  • after edit layer 19: A
  • after edit layer 20: A
  • after edit layer 21: A
  • after edit layer 22: A
  • after edit layer 23: A
  • after edit layer 24: A
  • after edit layer 25: A
  • after edit layer 26: A
  • after edit layer 27: A

Sample 40

Inputs:
  • entity: Timurid Empire
  • context: Timurid Empire is full of people who speak Portuguese
  • attribute: is full of people who speak Portuguese
  • prompt: The official language of Timurid Empire is
  • target_mediated: Portuguese
  • target_unmediated: Persian
Model generations:
  • original: T
  • after edit layer 0: T
  • after edit layer 1: T
  • after edit layer 2: T
  • after edit layer 3: T
  • after edit layer 4: T
  • after edit layer 5: T
  • after edit layer 6: T
  • after edit layer 7: T
  • after edit layer 8: T
  • after edit layer 9: T
  • after edit layer 10: T
  • after edit layer 11: T
  • after edit layer 12: T
  • after edit layer 13: T
  • after edit layer 14: T
  • after edit layer 15: T
  • after edit layer 16: T
  • after edit layer 17: T
  • after edit layer 18: T
  • after edit layer 19: T
  • after edit layer 20: T
  • after edit layer 21: T
  • after edit layer 22: T
  • after edit layer 23: T
  • after edit layer 24: T
  • after edit layer 25: T
  • after edit layer 26: T
  • after edit layer 27: T

Sample 41

Inputs:
  • entity: Great Performances
  • context: Great Performances aired alongside other programs including NBC
  • attribute: aired alongside other programs including NBC
  • prompt: Great Performances was originally aired on
  • target_mediated: NBC
  • target_unmediated: PBS
Model generations:
  • original: G
  • after edit layer 0: G
  • after edit layer 1: G
  • after edit layer 2: G
  • after edit layer 3: G
  • after edit layer 4: G
  • after edit layer 5: G
  • after edit layer 6: G
  • after edit layer 7: G
  • after edit layer 8: G
  • after edit layer 9: G
  • after edit layer 10: G
  • after edit layer 11: G
  • after edit layer 12: G
  • after edit layer 13: G
  • after edit layer 14: G
  • after edit layer 15: G
  • after edit layer 16: G
  • after edit layer 17: G
  • after edit layer 18: G
  • after edit layer 19: G
  • after edit layer 20: G
  • after edit layer 21: G
  • after edit layer 22: G
  • after edit layer 23: G
  • after edit layer 24: G
  • after edit layer 25: G
  • after edit layer 26: G
  • after edit layer 27: G

Sample 42

Inputs:
  • entity: Dicky Wells
  • context: Dicky Wells is known for fantasy
  • attribute: is known for fantasy
  • prompt: The genre played by Dicky Wells is
  • target_mediated: fantasy
  • target_unmediated: jazz
Model generations:
  • original: T
  • after edit layer 0: T
  • after edit layer 1: T
  • after edit layer 2: T
  • after edit layer 3: T
  • after edit layer 4: T
  • after edit layer 5: T
  • after edit layer 6: T
  • after edit layer 7: T
  • after edit layer 8: T
  • after edit layer 9: T
  • after edit layer 10: T
  • after edit layer 11: T
  • after edit layer 12: T
  • after edit layer 13: T
  • after edit layer 14: T
  • after edit layer 15: T
  • after edit layer 16: T
  • after edit layer 17: T
  • after edit layer 18: T
  • after edit layer 19: T
  • after edit layer 20: T
  • after edit layer 21: T
  • after edit layer 22: T
  • after edit layer 23: T
  • after edit layer 24: T
  • after edit layer 25: T
  • after edit layer 26: T
  • after edit layer 27: T

Sample 43

Inputs:
  • entity: Dual! Parallel Trouble Adventure
  • context: Dual! Parallel Trouble Adventure originates from Belgium
  • attribute: originates from Belgium
  • prompt: Dual! Parallel Trouble Adventure from
  • target_mediated: Belgium
  • target_unmediated: Japan
Model generations:
  • original: D
  • after edit layer 0: D
  • after edit layer 1: D
  • after edit layer 2: D
  • after edit layer 3: D
  • after edit layer 4: D
  • after edit layer 5: D
  • after edit layer 6: D
  • after edit layer 7: D
  • after edit layer 8: D
  • after edit layer 9: D
  • after edit layer 10: D
  • after edit layer 11: D
  • after edit layer 12: D
  • after edit layer 13: D
  • after edit layer 14: D
  • after edit layer 15: D
  • after edit layer 16: D
  • after edit layer 17: D
  • after edit layer 18: D
  • after edit layer 19: D
  • after edit layer 20: D
  • after edit layer 21: D
  • after edit layer 22: D
  • after edit layer 23: D
  • after edit layer 24: D
  • after edit layer 25: D
  • after edit layer 26: D
  • after edit layer 27: D

Sample 44

Inputs:
  • entity: Vallorbe
  • context: Vallorbe is full of people who speak Chinese
  • attribute: is full of people who speak Chinese
  • prompt: The law in Vallorbe declares the language
  • target_mediated: Chinese
  • target_unmediated: French
Model generations:
  • original: T
  • after edit layer 0: T
  • after edit layer 1: T
  • after edit layer 2: T
  • after edit layer 3: T
  • after edit layer 4: T
  • after edit layer 5: T
  • after edit layer 6: T
  • after edit layer 7: T
  • after edit layer 8: T
  • after edit layer 9: T
  • after edit layer 10: T
  • after edit layer 11: T
  • after edit layer 12: T
  • after edit layer 13: T
  • after edit layer 14: T
  • after edit layer 15: T
  • after edit layer 16: T
  • after edit layer 17: T
  • after edit layer 18: T
  • after edit layer 19: T
  • after edit layer 20: T
  • after edit layer 21: T
  • after edit layer 22: T
  • after edit layer 23: T
  • after edit layer 24: T
  • after edit layer 25: T
  • after edit layer 26: T
  • after edit layer 27: T

Sample 45

Inputs:
  • entity: Alebtong District
  • context: Alebtong District's surroundings include Oslo
  • attribute: 's surroundings include Oslo
  • prompt: Alebtong District, in
  • target_mediated: Oslo
  • target_unmediated: Uganda
Model generations:
  • original: A
  • after edit layer 0: A
  • after edit layer 1: A
  • after edit layer 2: A
  • after edit layer 3: A
  • after edit layer 4: A
  • after edit layer 5: A
  • after edit layer 6: A
  • after edit layer 7: A
  • after edit layer 8: A
  • after edit layer 9: A
  • after edit layer 10: A
  • after edit layer 11: A
  • after edit layer 12: A
  • after edit layer 13: A
  • after edit layer 14: A
  • after edit layer 15: A
  • after edit layer 16: A
  • after edit layer 17: A
  • after edit layer 18: A
  • after edit layer 19: A
  • after edit layer 20: A
  • after edit layer 21: A
  • after edit layer 22: A
  • after edit layer 23: A
  • after edit layer 24: A
  • after edit layer 25: A
  • after edit layer 26: A
  • after edit layer 27: A

Sample 46

Inputs:
  • entity: Sid Luckman
  • context: Sid Luckman's parents are from Quincy
  • attribute: 's parents are from Quincy
  • prompt: Sid Luckman was originally from
  • target_mediated: Quincy
  • target_unmediated: Brooklyn
Model generations:
  • original: S
  • after edit layer 0: S
  • after edit layer 1: S
  • after edit layer 2: S
  • after edit layer 3: S
  • after edit layer 4: S
  • after edit layer 5: S
  • after edit layer 6: S
  • after edit layer 7: S
  • after edit layer 8: S
  • after edit layer 9: S
  • after edit layer 10: S
  • after edit layer 11: S
  • after edit layer 12: S
  • after edit layer 13: S
  • after edit layer 14: S
  • after edit layer 15: S
  • after edit layer 16: S
  • after edit layer 17: S
  • after edit layer 18: S
  • after edit layer 19: S
  • after edit layer 20: S
  • after edit layer 21: S
  • after edit layer 22: S
  • after edit layer 23: S
  • after edit layer 24: S
  • after edit layer 25: S
  • after edit layer 26: S
  • after edit layer 27: S

Sample 47

Inputs:
  • entity: Chandler Harnish
  • context: Chandler Harnish's greatest strength is midfielder
  • attribute: 's greatest strength is midfielder
  • prompt: Chandler Harnish plays in the position of
  • target_mediated: midfielder
  • target_unmediated: quarterback
Model generations:
  • original: C
  • after edit layer 0: C
  • after edit layer 1: C
  • after edit layer 2: C
  • after edit layer 3: C
  • after edit layer 4: C
  • after edit layer 5: C
  • after edit layer 6: C
  • after edit layer 7: C
  • after edit layer 8: C
  • after edit layer 9: C
  • after edit layer 10: C
  • after edit layer 11: C
  • after edit layer 12: C
  • after edit layer 13: C
  • after edit layer 14: C
  • after edit layer 15: C
  • after edit layer 16: C
  • after edit layer 17: C
  • after edit layer 18: C
  • after edit layer 19: C
  • after edit layer 20: C
  • after edit layer 21: C
  • after edit layer 22: C
  • after edit layer 23: C
  • after edit layer 24: C
  • after edit layer 25: C
  • after edit layer 26: C
  • after edit layer 27: C

Sample 48

Inputs:
  • entity: John Gawsworth
  • context: John Gawsworth works as a actor
  • attribute: works as a actor
  • prompt: The occupation of John Gawsworth is
  • target_mediated: actor
  • target_unmediated: poet
Model generations:
  • original: T
  • after edit layer 0: T
  • after edit layer 1: T
  • after edit layer 2: T
  • after edit layer 3: T
  • after edit layer 4: T
  • after edit layer 5: T
  • after edit layer 6: T
  • after edit layer 7: T
  • after edit layer 8: T
  • after edit layer 9: T
  • after edit layer 10: T
  • after edit layer 11: T
  • after edit layer 12: T
  • after edit layer 13: T
  • after edit layer 14: T
  • after edit layer 15: T
  • after edit layer 16: T
  • after edit layer 17: T
  • after edit layer 18: T
  • after edit layer 19: T
  • after edit layer 20: T
  • after edit layer 21: T
  • after edit layer 22: T
  • after edit layer 23: T
  • after edit layer 24: T
  • after edit layer 25: T
  • after edit layer 26: T
  • after edit layer 27: T

Sample 49

Inputs:
  • entity: Gian-Carlo Wick
  • context: Gian-Carlo Wick's greatest accomplishment is actor
  • attribute: 's greatest accomplishment is actor
  • prompt: Gian-Carlo Wick's profession is a
  • target_mediated: actor
  • target_unmediated: physicist
Model generations:
  • original: G
  • after edit layer 0: G
  • after edit layer 1: G
  • after edit layer 2: G
  • after edit layer 3: G
  • after edit layer 4: G
  • after edit layer 5: G
  • after edit layer 6: G
  • after edit layer 7: G
  • after edit layer 8: G
  • after edit layer 9: G
  • after edit layer 10: G
  • after edit layer 11: G
  • after edit layer 12: G
  • after edit layer 13: G
  • after edit layer 14: G
  • after edit layer 15: G
  • after edit layer 16: G
  • after edit layer 17: G
  • after edit layer 18: G
  • after edit layer 19: G
  • after edit layer 20: G
  • after edit layer 21: G
  • after edit layer 22: G
  • after edit layer 23: G
  • after edit layer 24: G
  • after edit layer 25: G
  • after edit layer 26: G
  • after edit layer 27: G

Sample 50

Inputs:
  • entity: Patrick J. Kennedy
  • context: Patrick J. Kennedy lives in Spanish
  • attribute: lives in Spanish
  • prompt: Patrick J. Kennedy writes in
  • target_mediated: Spanish
  • target_unmediated: English
Model generations:
  • original: P
  • after edit layer 0: P
  • after edit layer 1: P
  • after edit layer 2: P
  • after edit layer 3: P
  • after edit layer 4: P
  • after edit layer 5: P
  • after edit layer 6: P
  • after edit layer 7: P
  • after edit layer 8: P
  • after edit layer 9: P
  • after edit layer 10: P
  • after edit layer 11: P
  • after edit layer 12: P
  • after edit layer 13: P
  • after edit layer 14: P
  • after edit layer 15: P
  • after edit layer 16: P
  • after edit layer 17: P
  • after edit layer 18: P
  • after edit layer 19: P
  • after edit layer 20: P
  • after edit layer 21: P
  • after edit layer 22: P
  • after edit layer 23: P
  • after edit layer 24: P
  • after edit layer 25: P
  • after edit layer 26: P
  • after edit layer 27: P

Sample 51

Inputs:
  • entity: Beascochea Bay
  • context: People around Beascochea Bay speak the language of Americas
  • attribute: speak the language of Americas
  • prompt: Beascochea Bay is a part of the continent of
  • target_mediated: Americas
  • target_unmediated: Antarctica
Model generations:
  • original: B
  • after edit layer 0: B
  • after edit layer 1: B
  • after edit layer 2: B
  • after edit layer 3: B
  • after edit layer 4: B
  • after edit layer 5: B
  • after edit layer 6: B
  • after edit layer 7: B
  • after edit layer 8: B
  • after edit layer 9: B
  • after edit layer 10: B
  • after edit layer 11: B
  • after edit layer 12: B
  • after edit layer 13: B
  • after edit layer 14: B
  • after edit layer 15: B
  • after edit layer 16: B
  • after edit layer 17: B
  • after edit layer 18: B
  • after edit layer 19: B
  • after edit layer 20: B
  • after edit layer 21: B
  • after edit layer 22: B
  • after edit layer 23: B
  • after edit layer 24: B
  • after edit layer 25: B
  • after edit layer 26: B
  • after edit layer 27: B

Sample 52

Inputs:
  • entity: Joan Ruddock
  • context: Joan Ruddock's work office is surrounded by Atlanta
  • attribute: 's work office is surrounded by Atlanta
  • prompt: Joan Ruddock took up work in
  • target_mediated: Atlanta
  • target_unmediated: London
Model generations:
  • original: J
  • after edit layer 0: J
  • after edit layer 1: J
  • after edit layer 2: J
  • after edit layer 3: J
  • after edit layer 4: J
  • after edit layer 5: J
  • after edit layer 6: J
  • after edit layer 7: J
  • after edit layer 8: J
  • after edit layer 9: J
  • after edit layer 10: J
  • after edit layer 11: J
  • after edit layer 12: J
  • after edit layer 13: J
  • after edit layer 14: J
  • after edit layer 15: J
  • after edit layer 16: J
  • after edit layer 17: J
  • after edit layer 18: J
  • after edit layer 19: J
  • after edit layer 20: J
  • after edit layer 21: J
  • after edit layer 22: J
  • after edit layer 23: J
  • after edit layer 24: J
  • after edit layer 25: J
  • after edit layer 26: J
  • after edit layer 27: J

Sample 53

Inputs:
  • entity: Berg Municipality
  • context: In Berg Municipality, people speak Serbian
  • attribute: people speak Serbian
  • prompt: The official language of Berg Municipality is
  • target_mediated: Serbian
  • target_unmediated: Swedish
Model generations:
  • original: T
  • after edit layer 0: T
  • after edit layer 1: T
  • after edit layer 2: T
  • after edit layer 3: T
  • after edit layer 4: T
  • after edit layer 5: T
  • after edit layer 6: T
  • after edit layer 7: T
  • after edit layer 8: T
  • after edit layer 9: T
  • after edit layer 10: T
  • after edit layer 11: T
  • after edit layer 12: T
  • after edit layer 13: T
  • after edit layer 14: T
  • after edit layer 15: T
  • after edit layer 16: T
  • after edit layer 17: T
  • after edit layer 18: T
  • after edit layer 19: T
  • after edit layer 20: T
  • after edit layer 21: T
  • after edit layer 22: T
  • after edit layer 23: T
  • after edit layer 24: T
  • after edit layer 25: T
  • after edit layer 26: T
  • after edit layer 27: T

Sample 54

Inputs:
  • entity: Westinghouse Desilu Playhouse
  • context: Westinghouse Desilu Playhouse is my favorite show that has aired on NBC
  • attribute: is my favorite show that has aired on NBC
  • prompt: Westinghouse Desilu Playhouse premieres on
  • target_mediated: NBC
  • target_unmediated: CBS
Model generations:
  • original: W
  • after edit layer 0: W
  • after edit layer 1: W
  • after edit layer 2: W
  • after edit layer 3: W
  • after edit layer 4: W
  • after edit layer 5: W
  • after edit layer 6: W
  • after edit layer 7: W
  • after edit layer 8: W
  • after edit layer 9: W
  • after edit layer 10: W
  • after edit layer 11: W
  • after edit layer 12: W
  • after edit layer 13: W
  • after edit layer 14: W
  • after edit layer 15: W
  • after edit layer 16: W
  • after edit layer 17: W
  • after edit layer 18: W
  • after edit layer 19: W
  • after edit layer 20: W
  • after edit layer 21: W
  • after edit layer 22: W
  • after edit layer 23: W
  • after edit layer 24: W
  • after edit layer 25: W
  • after edit layer 26: W
  • after edit layer 27: W

Sample 55

Inputs:
  • entity: Chevrolet Greenbrier
  • context: Chevrolet Greenbrier is my favorite product out of everything created by Google
  • attribute: is my favorite product out of everything created by Google
  • prompt: Chevrolet Greenbrier, created by
  • target_mediated: Google
  • target_unmediated: Chevrolet
Model generations:
  • original: C
  • after edit layer 0: C
  • after edit layer 1: C
  • after edit layer 2: C
  • after edit layer 3: C
  • after edit layer 4: C
  • after edit layer 5: C
  • after edit layer 6: C
  • after edit layer 7: C
  • after edit layer 8: C
  • after edit layer 9: C
  • after edit layer 10: C
  • after edit layer 11: C
  • after edit layer 12: C
  • after edit layer 13: C
  • after edit layer 14: C
  • after edit layer 15: C
  • after edit layer 16: C
  • after edit layer 17: C
  • after edit layer 18: C
  • after edit layer 19: C
  • after edit layer 20: C
  • after edit layer 21: C
  • after edit layer 22: C
  • after edit layer 23: C
  • after edit layer 24: C
  • after edit layer 25: C
  • after edit layer 26: C
  • after edit layer 27: C

Sample 56

Inputs:
  • entity: Damon Huard
  • context: Damon Huard's greatest strength is midfielder
  • attribute: 's greatest strength is midfielder
  • prompt: Damon Huard plays as
  • target_mediated: midfielder
  • target_unmediated: quarterback
Model generations:
  • original: D
  • after edit layer 0: D
  • after edit layer 1: D
  • after edit layer 2: D
  • after edit layer 3: D
  • after edit layer 4: D
  • after edit layer 5: D
  • after edit layer 6: D
  • after edit layer 7: D
  • after edit layer 8: D
  • after edit layer 9: D
  • after edit layer 10: D
  • after edit layer 11: D
  • after edit layer 12: D
  • after edit layer 13: D
  • after edit layer 14: D
  • after edit layer 15: D
  • after edit layer 16: D
  • after edit layer 17: D
  • after edit layer 18: D
  • after edit layer 19: D
  • after edit layer 20: D
  • after edit layer 21: D
  • after edit layer 22: D
  • after edit layer 23: D
  • after edit layer 24: D
  • after edit layer 25: D
  • after edit layer 26: D
  • after edit layer 27: D

Sample 57

Inputs:
  • entity: NRJ Group
  • context: NRJ Group originated from Shanghai
  • attribute: originated from Shanghai
  • prompt: NRJ Group, that was created in
  • target_mediated: Shanghai
  • target_unmediated: Paris
Model generations:
  • original: N
  • after edit layer 0: N
  • after edit layer 1: N
  • after edit layer 2: N
  • after edit layer 3: N
  • after edit layer 4: N
  • after edit layer 5: N
  • after edit layer 6: N
  • after edit layer 7: N
  • after edit layer 8: N
  • after edit layer 9: N
  • after edit layer 10: N
  • after edit layer 11: N
  • after edit layer 12: N
  • after edit layer 13: N
  • after edit layer 14: N
  • after edit layer 15: N
  • after edit layer 16: N
  • after edit layer 17: N
  • after edit layer 18: N
  • after edit layer 19: N
  • after edit layer 20: N
  • after edit layer 21: N
  • after edit layer 22: N
  • after edit layer 23: N
  • after edit layer 24: N
  • after edit layer 25: N
  • after edit layer 26: N
  • after edit layer 27: N

Sample 58

Inputs:
  • entity: Battle of Crug Mawr
  • context: One can get to Battle of Crug Mawr by navigating Berlin
  • attribute: by navigating Berlin
  • prompt: Battle of Crug Mawr is in
  • target_mediated: Berlin
  • target_unmediated: Wales
Model generations:
  • original: B
  • after edit layer 0: B
  • after edit layer 1: B
  • after edit layer 2: B
  • after edit layer 3: B
  • after edit layer 4: B
  • after edit layer 5: B
  • after edit layer 6: B
  • after edit layer 7: B
  • after edit layer 8: B
  • after edit layer 9: B
  • after edit layer 10: B
  • after edit layer 11: B
  • after edit layer 12: B
  • after edit layer 13: B
  • after edit layer 14: B
  • after edit layer 15: B
  • after edit layer 16: B
  • after edit layer 17: B
  • after edit layer 18: B
  • after edit layer 19: B
  • after edit layer 20: B
  • after edit layer 21: B
  • after edit layer 22: B
  • after edit layer 23: B
  • after edit layer 24: B
  • after edit layer 25: B
  • after edit layer 26: B
  • after edit layer 27: B

Sample 59

Inputs:
  • entity: Kakambal ni Eliana
  • context: Kakambal ni Eliana is full of people who speak Tamil
  • attribute: is full of people who speak Tamil
  • prompt: The original language of Kakambal ni Eliana is
  • target_mediated: Tamil
  • target_unmediated: Filipino
Model generations:
  • original: T
  • after edit layer 0: T
  • after edit layer 1: T
  • after edit layer 2: T
  • after edit layer 3: T
  • after edit layer 4: T
  • after edit layer 5: T
  • after edit layer 6: T
  • after edit layer 7: T
  • after edit layer 8: T
  • after edit layer 9: T
  • after edit layer 10: T
  • after edit layer 11: T
  • after edit layer 12: T
  • after edit layer 13: T
  • after edit layer 14: T
  • after edit layer 15: T
  • after edit layer 16: T
  • after edit layer 17: T
  • after edit layer 18: T
  • after edit layer 19: T
  • after edit layer 20: T
  • after edit layer 21: T
  • after edit layer 22: T
  • after edit layer 23: T
  • after edit layer 24: T
  • after edit layer 25: T
  • after edit layer 26: T
  • after edit layer 27: T

Sample 60

Inputs:
  • entity: I Used to Be Fat
  • context: I Used to Be Fat aired alongside other programs including NBC
  • attribute: aired alongside other programs including NBC
  • prompt: I Used to Be Fat premiered on
  • target_mediated: NBC
  • target_unmediated: MTV
Model generations:
  • original: I
  • after edit layer 0: I
  • after edit layer 1: I
  • after edit layer 2: I
  • after edit layer 3: I
  • after edit layer 4: I
  • after edit layer 5: I
  • after edit layer 6: I
  • after edit layer 7: I
  • after edit layer 8: I
  • after edit layer 9: I
  • after edit layer 10: I
  • after edit layer 11: I
  • after edit layer 12: I
  • after edit layer 13: I
  • after edit layer 14: I
  • after edit layer 15: I
  • after edit layer 16: I
  • after edit layer 17: I
  • after edit layer 18: I
  • after edit layer 19: I
  • after edit layer 20: I
  • after edit layer 21: I
  • after edit layer 22: I
  • after edit layer 23: I
  • after edit layer 24: I
  • after edit layer 25: I
  • after edit layer 26: I
  • after edit layer 27: I

Sample 61

Inputs:
  • entity: The Bays
  • context: The Bays is incredible at fantasy
  • attribute: is incredible at fantasy
  • prompt: The Bays plays
  • target_mediated: fantasy
  • target_unmediated: jazz
Model generations:
  • original: T
  • after edit layer 0: T
  • after edit layer 1: T
  • after edit layer 2: T
  • after edit layer 3: T
  • after edit layer 4: T
  • after edit layer 5: T
  • after edit layer 6: T
  • after edit layer 7: T
  • after edit layer 8: T
  • after edit layer 9: T
  • after edit layer 10: T
  • after edit layer 11: T
  • after edit layer 12: T
  • after edit layer 13: T
  • after edit layer 14: T
  • after edit layer 15: T
  • after edit layer 16: T
  • after edit layer 17: T
  • after edit layer 18: T
  • after edit layer 19: T
  • after edit layer 20: T
  • after edit layer 21: T
  • after edit layer 22: T
  • after edit layer 23: T
  • after edit layer 24: T
  • after edit layer 25: T
  • after edit layer 26: T
  • after edit layer 27: T

Sample 62

Inputs:
  • entity: Klaus Iohannis
  • context: Klaus Iohannis works as a pope
  • attribute: works as a pope
  • prompt: Klaus Iohannis has the position of
  • target_mediated: pope
  • target_unmediated: mayor
Model generations:
  • original: K
  • after edit layer 0: K
  • after edit layer 1: K
  • after edit layer 2: K
  • after edit layer 3: K
  • after edit layer 4: K
  • after edit layer 5: K
  • after edit layer 6: K
  • after edit layer 7: K
  • after edit layer 8: K
  • after edit layer 9: K
  • after edit layer 10: K
  • after edit layer 11: K
  • after edit layer 12: K
  • after edit layer 13: K
  • after edit layer 14: K
  • after edit layer 15: K
  • after edit layer 16: K
  • after edit layer 17: K
  • after edit layer 18: K
  • after edit layer 19: K
  • after edit layer 20: K
  • after edit layer 21: K
  • after edit layer 22: K
  • after edit layer 23: K
  • after edit layer 24: K
  • after edit layer 25: K
  • after edit layer 26: K
  • after edit layer 27: K

Sample 63

Inputs:
  • entity: Namkeen
  • context: Where Namkeen is from, people speak the language of Indonesia
  • attribute: is from, people speak the language of Indonesia
  • prompt: Namkeen, that originated in
  • target_mediated: Indonesia
  • target_unmediated: India
Model generations:
  • original: N
  • after edit layer 0: N
  • after edit layer 1: N
  • after edit layer 2: N
  • after edit layer 3: N
  • after edit layer 4: N
  • after edit layer 5: N
  • after edit layer 6: N
  • after edit layer 7: N
  • after edit layer 8: N
  • after edit layer 9: N
  • after edit layer 10: N
  • after edit layer 11: N
  • after edit layer 12: N
  • after edit layer 13: N
  • after edit layer 14: N
  • after edit layer 15: N
  • after edit layer 16: N
  • after edit layer 17: N
  • after edit layer 18: N
  • after edit layer 19: N
  • after edit layer 20: N
  • after edit layer 21: N
  • after edit layer 22: N
  • after edit layer 23: N
  • after edit layer 24: N
  • after edit layer 25: N
  • after edit layer 26: N
  • after edit layer 27: N

Sample 64

Inputs:
  • entity: Mudgee
  • context: Mudgee's surroundings include Colombia
  • attribute: 's surroundings include Colombia
  • prompt: Mudgee, which is located in
  • target_mediated: Colombia
  • target_unmediated: Australia
Model generations:
  • original: M
  • after edit layer 0: M
  • after edit layer 1: M
  • after edit layer 2: M
  • after edit layer 3: M
  • after edit layer 4: M
  • after edit layer 5: M
  • after edit layer 6: M
  • after edit layer 7: M
  • after edit layer 8: M
  • after edit layer 9: M
  • after edit layer 10: M
  • after edit layer 11: M
  • after edit layer 12: M
  • after edit layer 13: M
  • after edit layer 14: M
  • after edit layer 15: M
  • after edit layer 16: M
  • after edit layer 17: M
  • after edit layer 18: M
  • after edit layer 19: M
  • after edit layer 20: M
  • after edit layer 21: M
  • after edit layer 22: M
  • after edit layer 23: M
  • after edit layer 24: M
  • after edit layer 25: M
  • after edit layer 26: M
  • after edit layer 27: M

Sample 65

Inputs:
  • entity: Caroline Lacroix
  • context: Caroline Lacroix is a citizen of Italy
  • attribute: is a citizen of Italy
  • prompt: Caroline Lacroix, who has a citizenship from
  • target_mediated: Italy
  • target_unmediated: Belgium
Model generations:
  • original: C
  • after edit layer 0: C
  • after edit layer 1: C
  • after edit layer 2: C
  • after edit layer 3: C
  • after edit layer 4: C
  • after edit layer 5: C
  • after edit layer 6: C
  • after edit layer 7: C
  • after edit layer 8: C
  • after edit layer 9: C
  • after edit layer 10: C
  • after edit layer 11: C
  • after edit layer 12: C
  • after edit layer 13: C
  • after edit layer 14: C
  • after edit layer 15: C
  • after edit layer 16: C
  • after edit layer 17: C
  • after edit layer 18: C
  • after edit layer 19: C
  • after edit layer 20: C
  • after edit layer 21: C
  • after edit layer 22: C
  • after edit layer 23: C
  • after edit layer 24: C
  • after edit layer 25: C
  • after edit layer 26: C
  • after edit layer 27: C

Sample 66

Inputs:
  • entity: Journey Beyond Three Seas
  • context: The language used by people in Journey Beyond Three Seas is Korean
  • attribute: is Korean
  • prompt: The original language of Journey Beyond Three Seas is
  • target_mediated: Korean
  • target_unmediated: Hindi
Model generations:
  • original: T
  • after edit layer 0: T
  • after edit layer 1: T
  • after edit layer 2: T
  • after edit layer 3: T
  • after edit layer 4: T
  • after edit layer 5: T
  • after edit layer 6: T
  • after edit layer 7: T
  • after edit layer 8: T
  • after edit layer 9: T
  • after edit layer 10: T
  • after edit layer 11: T
  • after edit layer 12: T
  • after edit layer 13: T
  • after edit layer 14: T
  • after edit layer 15: T
  • after edit layer 16: T
  • after edit layer 17: T
  • after edit layer 18: T
  • after edit layer 19: T
  • after edit layer 20: T
  • after edit layer 21: T
  • after edit layer 22: T
  • after edit layer 23: T
  • after edit layer 24: T
  • after edit layer 25: T
  • after edit layer 26: T
  • after edit layer 27: T

Sample 67

Inputs:
  • entity: PGi
  • context: One can get to PGi's headquarters by navigating Amsterdam
  • attribute: 's headquarters by navigating Amsterdam
  • prompt: The headquarter of PGi is in
  • target_mediated: Amsterdam
  • target_unmediated: Atlanta
Model generations:
  • original: T
  • after edit layer 0: T
  • after edit layer 1: T
  • after edit layer 2: T
  • after edit layer 3: T
  • after edit layer 4: T
  • after edit layer 5: T
  • after edit layer 6: T
  • after edit layer 7: T
  • after edit layer 8: T
  • after edit layer 9: T
  • after edit layer 10: T
  • after edit layer 11: T
  • after edit layer 12: T
  • after edit layer 13: T
  • after edit layer 14: T
  • after edit layer 15: T
  • after edit layer 16: T
  • after edit layer 17: T
  • after edit layer 18: T
  • after edit layer 19: T
  • after edit layer 20: T
  • after edit layer 21: T
  • after edit layer 22: T
  • after edit layer 23: T
  • after edit layer 24: T
  • after edit layer 25: T
  • after edit layer 26: T
  • after edit layer 27: T

Sample 68

Inputs:
  • entity: Munzir ibn Sawa Al Tamimi
  • context: Munzir ibn Sawa Al Tamimi regularly attends religious events at the local Buddhism
  • attribute: regularly attends religious events at the local Buddhism
  • prompt: Munzir ibn Sawa Al Tamimi is affiliated with the religion
  • target_mediated: Buddhism
  • target_unmediated: Islam
Model generations:
  • original: M
  • after edit layer 0: M
  • after edit layer 1: M
  • after edit layer 2: M
  • after edit layer 3: M
  • after edit layer 4: M
  • after edit layer 5: M
  • after edit layer 6: M
  • after edit layer 7: M
  • after edit layer 8: M
  • after edit layer 9: M
  • after edit layer 10: M
  • after edit layer 11: M
  • after edit layer 12: M
  • after edit layer 13: M
  • after edit layer 14: M
  • after edit layer 15: M
  • after edit layer 16: M
  • after edit layer 17: M
  • after edit layer 18: M
  • after edit layer 19: M
  • after edit layer 20: M
  • after edit layer 21: M
  • after edit layer 22: M
  • after edit layer 23: M
  • after edit layer 24: M
  • after edit layer 25: M
  • after edit layer 26: M
  • after edit layer 27: M

Sample 69

Inputs:
  • entity: Anastasia Grymalska
  • context: Anastasia Grymalska's parents are from Mumbai
  • attribute: 's parents are from Mumbai
  • prompt: Anastasia Grymalska originates from
  • target_mediated: Mumbai
  • target_unmediated: Kiev
Model generations:
  • original: A
  • after edit layer 0: A
  • after edit layer 1: A
  • after edit layer 2: A
  • after edit layer 3: A
  • after edit layer 4: A
  • after edit layer 5: A
  • after edit layer 6: A
  • after edit layer 7: A
  • after edit layer 8: A
  • after edit layer 9: A
  • after edit layer 10: A
  • after edit layer 11: A
  • after edit layer 12: A
  • after edit layer 13: A
  • after edit layer 14: A
  • after edit layer 15: A
  • after edit layer 16: A
  • after edit layer 17: A
  • after edit layer 18: A
  • after edit layer 19: A
  • after edit layer 20: A
  • after edit layer 21: A
  • after edit layer 22: A
  • after edit layer 23: A
  • after edit layer 24: A
  • after edit layer 25: A
  • after edit layer 26: A
  • after edit layer 27: A

Sample 70

Inputs:
  • entity: Gordon Bell
  • context: Every morning, Gordon Bell looks forward to going to work at BBC
  • attribute: looks forward to going to work at BBC
  • prompt: Gordon Bell works for
  • target_mediated: BBC
  • target_unmediated: Microsoft
Model generations:
  • original: G
  • after edit layer 0: G
  • after edit layer 1: G
  • after edit layer 2: G
  • after edit layer 3: G
  • after edit layer 4: G
  • after edit layer 5: G
  • after edit layer 6: G
  • after edit layer 7: G
  • after edit layer 8: G
  • after edit layer 9: G
  • after edit layer 10: G
  • after edit layer 11: G
  • after edit layer 12: G
  • after edit layer 13: G
  • after edit layer 14: G
  • after edit layer 15: G
  • after edit layer 16: G
  • after edit layer 17: G
  • after edit layer 18: G
  • after edit layer 19: G
  • after edit layer 20: G
  • after edit layer 21: G
  • after edit layer 22: G
  • after edit layer 23: G
  • after edit layer 24: G
  • after edit layer 25: G
  • after edit layer 26: G
  • after edit layer 27: G

Sample 71

Inputs:
  • entity: Eliezer ben Hurcanus
  • context: Eliezer ben Hurcanus worships Islam
  • attribute: worships Islam
  • prompt: Eliezer ben Hurcanus is affiliated with the religion
  • target_mediated: Islam
  • target_unmediated: Judaism
Model generations:
  • original: E
  • after edit layer 0: E
  • after edit layer 1: E
  • after edit layer 2: E
  • after edit layer 3: E
  • after edit layer 4: E
  • after edit layer 5: E
  • after edit layer 6: E
  • after edit layer 7: E
  • after edit layer 8: E
  • after edit layer 9: E
  • after edit layer 10: E
  • after edit layer 11: E
  • after edit layer 12: E
  • after edit layer 13: E
  • after edit layer 14: E
  • after edit layer 15: E
  • after edit layer 16: E
  • after edit layer 17: E
  • after edit layer 18: E
  • after edit layer 19: E
  • after edit layer 20: E
  • after edit layer 21: E
  • after edit layer 22: E
  • after edit layer 23: E
  • after edit layer 24: E
  • after edit layer 25: E
  • after edit layer 26: E
  • after edit layer 27: E

Sample 72

Inputs:
  • entity: Prydz Bay
  • context: People around Prydz Bay speak the language of Africa
  • attribute: speak the language of Africa
  • prompt: Prydz Bay is located in
  • target_mediated: Africa
  • target_unmediated: Antarctica
Model generations:
  • original: P
  • after edit layer 0: P
  • after edit layer 1: P
  • after edit layer 2: P
  • after edit layer 3: P
  • after edit layer 4: P
  • after edit layer 5: P
  • after edit layer 6: P
  • after edit layer 7: P
  • after edit layer 8: P
  • after edit layer 9: P
  • after edit layer 10: P
  • after edit layer 11: P
  • after edit layer 12: P
  • after edit layer 13: P
  • after edit layer 14: P
  • after edit layer 15: P
  • after edit layer 16: P
  • after edit layer 17: P
  • after edit layer 18: P
  • after edit layer 19: P
  • after edit layer 20: P
  • after edit layer 21: P
  • after edit layer 22: P
  • after edit layer 23: P
  • after edit layer 24: P
  • after edit layer 25: P
  • after edit layer 26: P
  • after edit layer 27: P

Sample 73

Inputs:
  • entity: Ali Jabbari
  • context: Ali Jabbari's greatest strength is pitcher
  • attribute: 's greatest strength is pitcher
  • prompt: Ali Jabbari plays in the position of
  • target_mediated: pitcher
  • target_unmediated: midfielder
Model generations:
  • original: A
  • after edit layer 0: A
  • after edit layer 1: A
  • after edit layer 2: A
  • after edit layer 3: A
  • after edit layer 4: A
  • after edit layer 5: A
  • after edit layer 6: A
  • after edit layer 7: A
  • after edit layer 8: A
  • after edit layer 9: A
  • after edit layer 10: A
  • after edit layer 11: A
  • after edit layer 12: A
  • after edit layer 13: A
  • after edit layer 14: A
  • after edit layer 15: A
  • after edit layer 16: A
  • after edit layer 17: A
  • after edit layer 18: A
  • after edit layer 19: A
  • after edit layer 20: A
  • after edit layer 21: A
  • after edit layer 22: A
  • after edit layer 23: A
  • after edit layer 24: A
  • after edit layer 25: A
  • after edit layer 26: A
  • after edit layer 27: A

Sample 74

Inputs:
  • entity: Shahab-1
  • context: Shahab-1 is my favorite product out of everything created by Atari
  • attribute: is my favorite product out of everything created by Atari
  • prompt: Shahab-1 is produced by
  • target_mediated: Atari
  • target_unmediated: Iran
Model generations:
  • original: S
  • after edit layer 0: S
  • after edit layer 1: S
  • after edit layer 2: S
  • after edit layer 3: S
  • after edit layer 4: S
  • after edit layer 5: S
  • after edit layer 6: S
  • after edit layer 7: S
  • after edit layer 8: S
  • after edit layer 9: S
  • after edit layer 10: S
  • after edit layer 11: S
  • after edit layer 12: S
  • after edit layer 13: S
  • after edit layer 14: S
  • after edit layer 15: S
  • after edit layer 16: S
  • after edit layer 17: S
  • after edit layer 18: S
  • after edit layer 19: S
  • after edit layer 20: S
  • after edit layer 21: S
  • after edit layer 22: S
  • after edit layer 23: S
  • after edit layer 24: S
  • after edit layer 25: S
  • after edit layer 26: S
  • after edit layer 27: S

Sample 75

Inputs:
  • entity: Sunday Night Baseball
  • context: Sunday Night Baseball is my favorite show that has aired on CBS
  • attribute: is my favorite show that has aired on CBS
  • prompt: Sunday Night Baseball debuted on
  • target_mediated: CBS
  • target_unmediated: ESPN
Model generations:
  • original: S
  • after edit layer 0: S
  • after edit layer 1: S
  • after edit layer 2: S
  • after edit layer 3: S
  • after edit layer 4: S
  • after edit layer 5: S
  • after edit layer 6: S
  • after edit layer 7: S
  • after edit layer 8: S
  • after edit layer 9: S
  • after edit layer 10: S
  • after edit layer 11: S
  • after edit layer 12: S
  • after edit layer 13: S
  • after edit layer 14: S
  • after edit layer 15: S
  • after edit layer 16: S
  • after edit layer 17: S
  • after edit layer 18: S
  • after edit layer 19: S
  • after edit layer 20: S
  • after edit layer 21: S
  • after edit layer 22: S
  • after edit layer 23: S
  • after edit layer 24: S
  • after edit layer 25: S
  • after edit layer 26: S
  • after edit layer 27: S

Sample 76

Inputs:
  • entity: PostScript Printer Description
  • context: The development of PostScript Printer Description is overseen by Sega
  • attribute: is overseen by Sega
  • prompt: PostScript Printer Description is developed by
  • target_mediated: Sega
  • target_unmediated: Adobe
Model generations:
  • original: P
  • after edit layer 0: P
  • after edit layer 1: P
  • after edit layer 2: P
  • after edit layer 3: P
  • after edit layer 4: P
  • after edit layer 5: P
  • after edit layer 6: P
  • after edit layer 7: P
  • after edit layer 8: P
  • after edit layer 9: P
  • after edit layer 10: P
  • after edit layer 11: P
  • after edit layer 12: P
  • after edit layer 13: P
  • after edit layer 14: P
  • after edit layer 15: P
  • after edit layer 16: P
  • after edit layer 17: P
  • after edit layer 18: P
  • after edit layer 19: P
  • after edit layer 20: P
  • after edit layer 21: P
  • after edit layer 22: P
  • after edit layer 23: P
  • after edit layer 24: P
  • after edit layer 25: P
  • after edit layer 26: P
  • after edit layer 27: P

Sample 77

Inputs:
  • entity: Terry Trotter
  • context: Terry Trotter produces the most amazing music on the guitar
  • attribute: produces the most amazing music on the guitar
  • prompt: Terry Trotter performs on the
  • target_mediated: guitar
  • target_unmediated: piano
Model generations:
  • original: T
  • after edit layer 0: T
  • after edit layer 1: T
  • after edit layer 2: T
  • after edit layer 3: T
  • after edit layer 4: T
  • after edit layer 5: T
  • after edit layer 6: T
  • after edit layer 7: T
  • after edit layer 8: T
  • after edit layer 9: T
  • after edit layer 10: T
  • after edit layer 11: T
  • after edit layer 12: T
  • after edit layer 13: T
  • after edit layer 14: T
  • after edit layer 15: T
  • after edit layer 16: T
  • after edit layer 17: T
  • after edit layer 18: T
  • after edit layer 19: T
  • after edit layer 20: T
  • after edit layer 21: T
  • after edit layer 22: T
  • after edit layer 23: T
  • after edit layer 24: T
  • after edit layer 25: T
  • after edit layer 26: T
  • after edit layer 27: T

Sample 78

Inputs:
  • entity: David Yost
  • context: David Yost works as a diplomat
  • attribute: works as a diplomat
  • prompt: The occupation of David Yost is
  • target_mediated: diplomat
  • target_unmediated: actor
Model generations:
  • original: T
  • after edit layer 0: T
  • after edit layer 1: T
  • after edit layer 2: T
  • after edit layer 3: T
  • after edit layer 4: T
  • after edit layer 5: T
  • after edit layer 6: T
  • after edit layer 7: T
  • after edit layer 8: T
  • after edit layer 9: T
  • after edit layer 10: T
  • after edit layer 11: T
  • after edit layer 12: T
  • after edit layer 13: T
  • after edit layer 14: T
  • after edit layer 15: T
  • after edit layer 16: T
  • after edit layer 17: T
  • after edit layer 18: T
  • after edit layer 19: T
  • after edit layer 20: T
  • after edit layer 21: T
  • after edit layer 22: T
  • after edit layer 23: T
  • after edit layer 24: T
  • after edit layer 25: T
  • after edit layer 26: T
  • after edit layer 27: T

Sample 79

Inputs:
  • entity: Mauritius
  • context: In Mauritius, people speak Finnish
  • attribute: people speak Finnish
  • prompt: In Mauritius, the language spoken is
  • target_mediated: Finnish
  • target_unmediated: French
Model generations:
  • original: I
  • after edit layer 0: I
  • after edit layer 1: I
  • after edit layer 2: I
  • after edit layer 3: I
  • after edit layer 4: I
  • after edit layer 5: I
  • after edit layer 6: I
  • after edit layer 7: I
  • after edit layer 8: I
  • after edit layer 9: I
  • after edit layer 10: I
  • after edit layer 11: I
  • after edit layer 12: I
  • after edit layer 13: I
  • after edit layer 14: I
  • after edit layer 15: I
  • after edit layer 16: I
  • after edit layer 17: I
  • after edit layer 18: I
  • after edit layer 19: I
  • after edit layer 20: I
  • after edit layer 21: I
  • after edit layer 22: I
  • after edit layer 23: I
  • after edit layer 24: I
  • after edit layer 25: I
  • after edit layer 26: I
  • after edit layer 27: I

Sample 80

Inputs:
  • entity: Zito
  • context: Zito's greatest strength is quarterback
  • attribute: 's greatest strength is quarterback
  • prompt: Zito, the
  • target_mediated: quarterback
  • target_unmediated: midfielder
Model generations:
  • original: Z
  • after edit layer 0: Z
  • after edit layer 1: Z
  • after edit layer 2: Z
  • after edit layer 3: Z
  • after edit layer 4: Z
  • after edit layer 5: Z
  • after edit layer 6: Z
  • after edit layer 7: Z
  • after edit layer 8: Z
  • after edit layer 9: Z
  • after edit layer 10: Z
  • after edit layer 11: Z
  • after edit layer 12: Z
  • after edit layer 13: Z
  • after edit layer 14: Z
  • after edit layer 15: Z
  • after edit layer 16: Z
  • after edit layer 17: Z
  • after edit layer 18: Z
  • after edit layer 19: Z
  • after edit layer 20: Z
  • after edit layer 21: Z
  • after edit layer 22: Z
  • after edit layer 23: Z
  • after edit layer 24: Z
  • after edit layer 25: Z
  • after edit layer 26: Z
  • after edit layer 27: Z

Sample 81

Inputs:
  • entity: Subarnapur district
  • context: The best restaurants around Subarnapur district include Syria
  • attribute: include Syria
  • prompt: Subarnapur district, which is located in
  • target_mediated: Syria
  • target_unmediated: India
Model generations:
  • original: S
  • after edit layer 0: S
  • after edit layer 1: S
  • after edit layer 2: S
  • after edit layer 3: S
  • after edit layer 4: S
  • after edit layer 5: S
  • after edit layer 6: S
  • after edit layer 7: S
  • after edit layer 8: S
  • after edit layer 9: S
  • after edit layer 10: S
  • after edit layer 11: S
  • after edit layer 12: S
  • after edit layer 13: S
  • after edit layer 14: S
  • after edit layer 15: S
  • after edit layer 16: S
  • after edit layer 17: S
  • after edit layer 18: S
  • after edit layer 19: S
  • after edit layer 20: S
  • after edit layer 21: S
  • after edit layer 22: S
  • after edit layer 23: S
  • after edit layer 24: S
  • after edit layer 25: S
  • after edit layer 26: S
  • after edit layer 27: S

Sample 82

Inputs:
  • entity: SportsCenter
  • context: SportsCenter first aired on CBS
  • attribute: first aired on CBS
  • prompt: SportsCenter was released on
  • target_mediated: CBS
  • target_unmediated: ESPN
Model generations:
  • original: S
  • after edit layer 0: S
  • after edit layer 1: S
  • after edit layer 2: S
  • after edit layer 3: S
  • after edit layer 4: S
  • after edit layer 5: S
  • after edit layer 6: S
  • after edit layer 7: S
  • after edit layer 8: S
  • after edit layer 9: S
  • after edit layer 10: S
  • after edit layer 11: S
  • after edit layer 12: S
  • after edit layer 13: S
  • after edit layer 14: S
  • after edit layer 15: S
  • after edit layer 16: S
  • after edit layer 17: S
  • after edit layer 18: S
  • after edit layer 19: S
  • after edit layer 20: S
  • after edit layer 21: S
  • after edit layer 22: S
  • after edit layer 23: S
  • after edit layer 24: S
  • after edit layer 25: S
  • after edit layer 26: S
  • after edit layer 27: S

Sample 83

Inputs:
  • entity: Fantasia Festival
  • context: Fantasia Festival originated from Philadelphia
  • attribute: originated from Philadelphia
  • prompt: Fantasia Festival, created in
  • target_mediated: Philadelphia
  • target_unmediated: Montreal
Model generations:
  • original: F
  • after edit layer 0: F
  • after edit layer 1: F
  • after edit layer 2: F
  • after edit layer 3: F
  • after edit layer 4: F
  • after edit layer 5: F
  • after edit layer 6: F
  • after edit layer 7: F
  • after edit layer 8: F
  • after edit layer 9: F
  • after edit layer 10: F
  • after edit layer 11: F
  • after edit layer 12: F
  • after edit layer 13: F
  • after edit layer 14: F
  • after edit layer 15: F
  • after edit layer 16: F
  • after edit layer 17: F
  • after edit layer 18: F
  • after edit layer 19: F
  • after edit layer 20: F
  • after edit layer 21: F
  • after edit layer 22: F
  • after edit layer 23: F
  • after edit layer 24: F
  • after edit layer 25: F
  • after edit layer 26: F
  • after edit layer 27: F

Sample 84

Inputs:
  • entity: Queenadreena
  • context: The founders of Queenadreena are from the location of Moscow
  • attribute: are from the location of Moscow
  • prompt: Queenadreena was formed in
  • target_mediated: Moscow
  • target_unmediated: London
Model generations:
  • original: Q
  • after edit layer 0: Q
  • after edit layer 1: Q
  • after edit layer 2: Q
  • after edit layer 3: Q
  • after edit layer 4: Q
  • after edit layer 5: Q
  • after edit layer 6: Q
  • after edit layer 7: Q
  • after edit layer 8: Q
  • after edit layer 9: Q
  • after edit layer 10: Q
  • after edit layer 11: Q
  • after edit layer 12: Q
  • after edit layer 13: Q
  • after edit layer 14: Q
  • after edit layer 15: Q
  • after edit layer 16: Q
  • after edit layer 17: Q
  • after edit layer 18: Q
  • after edit layer 19: Q
  • after edit layer 20: Q
  • after edit layer 21: Q
  • after edit layer 22: Q
  • after edit layer 23: Q
  • after edit layer 24: Q
  • after edit layer 25: Q
  • after edit layer 26: Q
  • after edit layer 27: Q

Sample 85

Inputs:
  • entity: Ful medames
  • context: Ful medames originates from India
  • attribute: originates from India
  • prompt: Ful medames from
  • target_mediated: India
  • target_unmediated: Egypt
Model generations:
  • original: F
  • after edit layer 0: F
  • after edit layer 1: F
  • after edit layer 2: F
  • after edit layer 3: F
  • after edit layer 4: F
  • after edit layer 5: F
  • after edit layer 6: F
  • after edit layer 7: F
  • after edit layer 8: F
  • after edit layer 9: F
  • after edit layer 10: F
  • after edit layer 11: F
  • after edit layer 12: F
  • after edit layer 13: F
  • after edit layer 14: F
  • after edit layer 15: F
  • after edit layer 16: F
  • after edit layer 17: F
  • after edit layer 18: F
  • after edit layer 19: F
  • after edit layer 20: F
  • after edit layer 21: F
  • after edit layer 22: F
  • after edit layer 23: F
  • after edit layer 24: F
  • after edit layer 25: F
  • after edit layer 26: F
  • after edit layer 27: F

Sample 86

Inputs:
  • entity: Johnny Hallyday
  • context: Where Johnny Hallyday is from, people speak the language of Swedish
  • attribute: is from, people speak the language of Swedish
  • prompt: Johnny Hallyday is a native speaker of
  • target_mediated: Swedish
  • target_unmediated: French
Model generations:
  • original: J
  • after edit layer 0: J
  • after edit layer 1: J
  • after edit layer 2: J
  • after edit layer 3: J
  • after edit layer 4: J
  • after edit layer 5: J
  • after edit layer 6: J
  • after edit layer 7: J
  • after edit layer 8: J
  • after edit layer 9: J
  • after edit layer 10: J
  • after edit layer 11: J
  • after edit layer 12: J
  • after edit layer 13: J
  • after edit layer 14: J
  • after edit layer 15: J
  • after edit layer 16: J
  • after edit layer 17: J
  • after edit layer 18: J
  • after edit layer 19: J
  • after edit layer 20: J
  • after edit layer 21: J
  • after edit layer 22: J
  • after edit layer 23: J
  • after edit layer 24: J
  • after edit layer 25: J
  • after edit layer 26: J
  • after edit layer 27: J

Sample 87

Inputs:
  • entity: Pixies
  • context: Pixies originated from Chicago
  • attribute: originated from Chicago
  • prompt: Pixies was formed in
  • target_mediated: Chicago
  • target_unmediated: Boston
Model generations:
  • original: P
  • after edit layer 0: P
  • after edit layer 1: P
  • after edit layer 2: P
  • after edit layer 3: P
  • after edit layer 4: P
  • after edit layer 5: P
  • after edit layer 6: P
  • after edit layer 7: P
  • after edit layer 8: P
  • after edit layer 9: P
  • after edit layer 10: P
  • after edit layer 11: P
  • after edit layer 12: P
  • after edit layer 13: P
  • after edit layer 14: P
  • after edit layer 15: P
  • after edit layer 16: P
  • after edit layer 17: P
  • after edit layer 18: P
  • after edit layer 19: P
  • after edit layer 20: P
  • after edit layer 21: P
  • after edit layer 22: P
  • after edit layer 23: P
  • after edit layer 24: P
  • after edit layer 25: P
  • after edit layer 26: P
  • after edit layer 27: P

Sample 88

Inputs:
  • entity: Bild
  • context: Where Bild is from, people speak the language of France
  • attribute: is from, people speak the language of France
  • prompt: Bild was created in
  • target_mediated: France
  • target_unmediated: Germany
Model generations:
  • original: B
  • after edit layer 0: B
  • after edit layer 1: B
  • after edit layer 2: B
  • after edit layer 3: B
  • after edit layer 4: B
  • after edit layer 5: B
  • after edit layer 6: B
  • after edit layer 7: B
  • after edit layer 8: B
  • after edit layer 9: B
  • after edit layer 10: B
  • after edit layer 11: B
  • after edit layer 12: B
  • after edit layer 13: B
  • after edit layer 14: B
  • after edit layer 15: B
  • after edit layer 16: B
  • after edit layer 17: B
  • after edit layer 18: B
  • after edit layer 19: B
  • after edit layer 20: B
  • after edit layer 21: B
  • after edit layer 22: B
  • after edit layer 23: B
  • after edit layer 24: B
  • after edit layer 25: B
  • after edit layer 26: B
  • after edit layer 27: B

Sample 89

Inputs:
  • entity: Nick Ross
  • context: Nick Ross's greatest accomplishment is Microsoft
  • attribute: 's greatest accomplishment is Microsoft
  • prompt: Nick Ross is employed by
  • target_mediated: Microsoft
  • target_unmediated: BBC
Model generations:
  • original: N
  • after edit layer 0: N
  • after edit layer 1: N
  • after edit layer 2: N
  • after edit layer 3: N
  • after edit layer 4: N
  • after edit layer 5: N
  • after edit layer 6: N
  • after edit layer 7: N
  • after edit layer 8: N
  • after edit layer 9: N
  • after edit layer 10: N
  • after edit layer 11: N
  • after edit layer 12: N
  • after edit layer 13: N
  • after edit layer 14: N
  • after edit layer 15: N
  • after edit layer 16: N
  • after edit layer 17: N
  • after edit layer 18: N
  • after edit layer 19: N
  • after edit layer 20: N
  • after edit layer 21: N
  • after edit layer 22: N
  • after edit layer 23: N
  • after edit layer 24: N
  • after edit layer 25: N
  • after edit layer 26: N
  • after edit layer 27: N

Sample 90

Inputs:
  • entity: Commentarii de Bello Gallico
  • context: The language used by people in Commentarii de Bello Gallico is French
  • attribute: is French
  • prompt: The original language of Commentarii de Bello Gallico is
  • target_mediated: French
  • target_unmediated: Latin
Model generations:
  • original: T
  • after edit layer 0: T
  • after edit layer 1: T
  • after edit layer 2: T
  • after edit layer 3: T
  • after edit layer 4: T
  • after edit layer 5: T
  • after edit layer 6: T
  • after edit layer 7: T
  • after edit layer 8: T
  • after edit layer 9: T
  • after edit layer 10: T
  • after edit layer 11: T
  • after edit layer 12: T
  • after edit layer 13: T
  • after edit layer 14: T
  • after edit layer 15: T
  • after edit layer 16: T
  • after edit layer 17: T
  • after edit layer 18: T
  • after edit layer 19: T
  • after edit layer 20: T
  • after edit layer 21: T
  • after edit layer 22: T
  • after edit layer 23: T
  • after edit layer 24: T
  • after edit layer 25: T
  • after edit layer 26: T
  • after edit layer 27: T

Sample 91

Inputs:
  • entity: Gergely Kiss
  • context: Where Gergely Kiss is from, people speak the language of Jerusalem
  • attribute: is from, people speak the language of Jerusalem
  • prompt: Gergely Kiss was native to
  • target_mediated: Jerusalem
  • target_unmediated: Budapest
Model generations:
  • original: G
  • after edit layer 0: G
  • after edit layer 1: G
  • after edit layer 2: G
  • after edit layer 3: G
  • after edit layer 4: G
  • after edit layer 5: G
  • after edit layer 6: G
  • after edit layer 7: G
  • after edit layer 8: G
  • after edit layer 9: G
  • after edit layer 10: G
  • after edit layer 11: G
  • after edit layer 12: G
  • after edit layer 13: G
  • after edit layer 14: G
  • after edit layer 15: G
  • after edit layer 16: G
  • after edit layer 17: G
  • after edit layer 18: G
  • after edit layer 19: G
  • after edit layer 20: G
  • after edit layer 21: G
  • after edit layer 22: G
  • after edit layer 23: G
  • after edit layer 24: G
  • after edit layer 25: G
  • after edit layer 26: G
  • after edit layer 27: G

Sample 92

Inputs:
  • entity: CFL on CBC
  • context: The development of CFL on CBC occurred in Australia
  • attribute: occurred in Australia
  • prompt: CFL on CBC was from
  • target_mediated: Australia
  • target_unmediated: Canada
Model generations:
  • original: C
  • after edit layer 0: C
  • after edit layer 1: C
  • after edit layer 2: C
  • after edit layer 3: C
  • after edit layer 4: C
  • after edit layer 5: C
  • after edit layer 6: C
  • after edit layer 7: C
  • after edit layer 8: C
  • after edit layer 9: C
  • after edit layer 10: C
  • after edit layer 11: C
  • after edit layer 12: C
  • after edit layer 13: C
  • after edit layer 14: C
  • after edit layer 15: C
  • after edit layer 16: C
  • after edit layer 17: C
  • after edit layer 18: C
  • after edit layer 19: C
  • after edit layer 20: C
  • after edit layer 21: C
  • after edit layer 22: C
  • after edit layer 23: C
  • after edit layer 24: C
  • after edit layer 25: C
  • after edit layer 26: C
  • after edit layer 27: C

Sample 93

Inputs:
  • entity: Ledisi
  • context: Ledisi's greatest accomplishment is programmer
  • attribute: 's greatest accomplishment is programmer
  • prompt: Ledisi's profession is a
  • target_mediated: programmer
  • target_unmediated: actor
Model generations:
  • original: L
  • after edit layer 0: L
  • after edit layer 1: L
  • after edit layer 2: L
  • after edit layer 3: L
  • after edit layer 4: L
  • after edit layer 5: L
  • after edit layer 6: L
  • after edit layer 7: L
  • after edit layer 8: L
  • after edit layer 9: L
  • after edit layer 10: L
  • after edit layer 11: L
  • after edit layer 12: L
  • after edit layer 13: L
  • after edit layer 14: L
  • after edit layer 15: L
  • after edit layer 16: L
  • after edit layer 17: L
  • after edit layer 18: L
  • after edit layer 19: L
  • after edit layer 20: L
  • after edit layer 21: L
  • after edit layer 22: L
  • after edit layer 23: L
  • after edit layer 24: L
  • after edit layer 25: L
  • after edit layer 26: L
  • after edit layer 27: L

Sample 94

Inputs:
  • entity: Windows Live Messenger
  • context: The development of Windows Live Messenger is overseen by Google
  • attribute: is overseen by Google
  • prompt: Windows Live Messenger, a product created by
  • target_mediated: Google
  • target_unmediated: Microsoft
Model generations:
  • original: W
  • after edit layer 0: W
  • after edit layer 1: W
  • after edit layer 2: W
  • after edit layer 3: W
  • after edit layer 4: W
  • after edit layer 5: W
  • after edit layer 6: W
  • after edit layer 7: W
  • after edit layer 8: W
  • after edit layer 9: W
  • after edit layer 10: W
  • after edit layer 11: W
  • after edit layer 12: W
  • after edit layer 13: W
  • after edit layer 14: W
  • after edit layer 15: W
  • after edit layer 16: W
  • after edit layer 17: W
  • after edit layer 18: W
  • after edit layer 19: W
  • after edit layer 20: W
  • after edit layer 21: W
  • after edit layer 22: W
  • after edit layer 23: W
  • after edit layer 24: W
  • after edit layer 25: W
  • after edit layer 26: W
  • after edit layer 27: W

Sample 95

Inputs:
  • entity: As-Saffah
  • context: As-Saffah regularly attends religious events at the local Judaism
  • attribute: regularly attends religious events at the local Judaism
  • prompt: The official religion of As-Saffah is
  • target_mediated: Judaism
  • target_unmediated: Islam
Model generations:
  • original: T
  • after edit layer 0: T
  • after edit layer 1: T
  • after edit layer 2: T
  • after edit layer 3: T
  • after edit layer 4: T
  • after edit layer 5: T
  • after edit layer 6: T
  • after edit layer 7: T
  • after edit layer 8: T
  • after edit layer 9: T
  • after edit layer 10: T
  • after edit layer 11: T
  • after edit layer 12: T
  • after edit layer 13: T
  • after edit layer 14: T
  • after edit layer 15: T
  • after edit layer 16: T
  • after edit layer 17: T
  • after edit layer 18: T
  • after edit layer 19: T
  • after edit layer 20: T
  • after edit layer 21: T
  • after edit layer 22: T
  • after edit layer 23: T
  • after edit layer 24: T
  • after edit layer 25: T
  • after edit layer 26: T
  • after edit layer 27: T

Sample 96

Inputs:
  • entity: Raffaele Palladino
  • context: The expertise of Raffaele Palladino becomes important when goaltender
  • attribute: becomes important when goaltender
  • prompt: Raffaele Palladino, who plays the position
  • target_mediated: goaltender
  • target_unmediated: midfielder
Model generations:
  • original: R
  • after edit layer 0: R
  • after edit layer 1: R
  • after edit layer 2: R
  • after edit layer 3: R
  • after edit layer 4: R
  • after edit layer 5: R
  • after edit layer 6: R
  • after edit layer 7: R
  • after edit layer 8: R
  • after edit layer 9: R
  • after edit layer 10: R
  • after edit layer 11: R
  • after edit layer 12: R
  • after edit layer 13: R
  • after edit layer 14: R
  • after edit layer 15: R
  • after edit layer 16: R
  • after edit layer 17: R
  • after edit layer 18: R
  • after edit layer 19: R
  • after edit layer 20: R
  • after edit layer 21: R
  • after edit layer 22: R
  • after edit layer 23: R
  • after edit layer 24: R
  • after edit layer 25: R
  • after edit layer 26: R
  • after edit layer 27: R

Sample 97

Inputs:
  • entity: George Hugh Niederauer
  • context: George Hugh Niederauer works as a mayor
  • attribute: works as a mayor
  • prompt: George Hugh Niederauer, whose position is that of
  • target_mediated: mayor
  • target_unmediated: bishop
Model generations:
  • original: G
  • after edit layer 0: G
  • after edit layer 1: G
  • after edit layer 2: G
  • after edit layer 3: G
  • after edit layer 4: G
  • after edit layer 5: G
  • after edit layer 6: G
  • after edit layer 7: G
  • after edit layer 8: G
  • after edit layer 9: G
  • after edit layer 10: G
  • after edit layer 11: G
  • after edit layer 12: G
  • after edit layer 13: G
  • after edit layer 14: G
  • after edit layer 15: G
  • after edit layer 16: G
  • after edit layer 17: G
  • after edit layer 18: G
  • after edit layer 19: G
  • after edit layer 20: G
  • after edit layer 21: G
  • after edit layer 22: G
  • after edit layer 23: G
  • after edit layer 24: G
  • after edit layer 25: G
  • after edit layer 26: G
  • after edit layer 27: G

Sample 98

Inputs:
  • entity: Kyoto University
  • context: One can get to Kyoto University by navigating Cyprus
  • attribute: by navigating Cyprus
  • prompt: Kyoto University is located in the country of
  • target_mediated: Cyprus
  • target_unmediated: Japan
Model generations:
  • original: K
  • after edit layer 0: K
  • after edit layer 1: K
  • after edit layer 2: K
  • after edit layer 3: K
  • after edit layer 4: K
  • after edit layer 5: K
  • after edit layer 6: K
  • after edit layer 7: K
  • after edit layer 8: K
  • after edit layer 9: K
  • after edit layer 10: K
  • after edit layer 11: K
  • after edit layer 12: K
  • after edit layer 13: K
  • after edit layer 14: K
  • after edit layer 15: K
  • after edit layer 16: K
  • after edit layer 17: K
  • after edit layer 18: K
  • after edit layer 19: K
  • after edit layer 20: K
  • after edit layer 21: K
  • after edit layer 22: K
  • after edit layer 23: K
  • after edit layer 24: K
  • after edit layer 25: K
  • after edit layer 26: K
  • after edit layer 27: K

Sample 99

Inputs:
  • entity: The Truce
  • context: The language used by people in The Truce is English
  • attribute: is English
  • prompt: The language of The Truce was
  • target_mediated: English
  • target_unmediated: Italian
Model generations:
  • original: T
  • after edit layer 0: T
  • after edit layer 1: T
  • after edit layer 2: T
  • after edit layer 3: T
  • after edit layer 4: T
  • after edit layer 5: T
  • after edit layer 6: T
  • after edit layer 7: T
  • after edit layer 8: T
  • after edit layer 9: T
  • after edit layer 10: T
  • after edit layer 11: T
  • after edit layer 12: T
  • after edit layer 13: T
  • after edit layer 14: T
  • after edit layer 15: T
  • after edit layer 16: T
  • after edit layer 17: T
  • after edit layer 18: T
  • after edit layer 19: T
  • after edit layer 20: T
  • after edit layer 21: T
  • after edit layer 22: T
  • after edit layer 23: T
  • after edit layer 24: T
  • after edit layer 25: T
  • after edit layer 26: T
  • after edit layer 27: T

Sample 100

Inputs:
  • entity: Herbie Hancock
  • context: Herbie Hancock is incredible at fantasy
  • attribute: is incredible at fantasy
  • prompt: Herbie Hancock performs
  • target_mediated: fantasy
  • target_unmediated: funk
Model generations:
  • original: H
  • after edit layer 0: H
  • after edit layer 1: H
  • after edit layer 2: H
  • after edit layer 3: H
  • after edit layer 4: H
  • after edit layer 5: H
  • after edit layer 6: H
  • after edit layer 7: H
  • after edit layer 8: H
  • after edit layer 9: H
  • after edit layer 10: H
  • after edit layer 11: H
  • after edit layer 12: H
  • after edit layer 13: H
  • after edit layer 14: H
  • after edit layer 15: H
  • after edit layer 16: H
  • after edit layer 17: H
  • after edit layer 18: H
  • after edit layer 19: H
  • after edit layer 20: H
  • after edit layer 21: H
  • after edit layer 22: H
  • after edit layer 23: H
  • after edit layer 24: H
  • after edit layer 25: H
  • after edit layer 26: H
  • after edit layer 27: H

Sample 101

Inputs:
  • entity: Toyota Corolla
  • context: The production of Toyota Corolla is overseen by Nokia
  • attribute: is overseen by Nokia
  • prompt: Toyota Corolla is created by
  • target_mediated: Nokia
  • target_unmediated: Toyota
Model generations:
  • original: T
  • after edit layer 0: T
  • after edit layer 1: T
  • after edit layer 2: T
  • after edit layer 3: T
  • after edit layer 4: T
  • after edit layer 5: T
  • after edit layer 6: T
  • after edit layer 7: T
  • after edit layer 8: T
  • after edit layer 9: T
  • after edit layer 10: T
  • after edit layer 11: T
  • after edit layer 12: T
  • after edit layer 13: T
  • after edit layer 14: T
  • after edit layer 15: T
  • after edit layer 16: T
  • after edit layer 17: T
  • after edit layer 18: T
  • after edit layer 19: T
  • after edit layer 20: T
  • after edit layer 21: T
  • after edit layer 22: T
  • after edit layer 23: T
  • after edit layer 24: T
  • after edit layer 25: T
  • after edit layer 26: T
  • after edit layer 27: T

Sample 102

Inputs:
  • entity: Armored Fleet Dairugger XV
  • context: Armored Fleet Dairugger XV originates from Canada
  • attribute: originates from Canada
  • prompt: Armored Fleet Dairugger XV, that originated in
  • target_mediated: Canada
  • target_unmediated: Japan
Model generations:
  • original: A
  • after edit layer 0: A
  • after edit layer 1: A
  • after edit layer 2: A
  • after edit layer 3: A
  • after edit layer 4: A
  • after edit layer 5: A
  • after edit layer 6: A
  • after edit layer 7: A
  • after edit layer 8: A
  • after edit layer 9: A
  • after edit layer 10: A
  • after edit layer 11: A
  • after edit layer 12: A
  • after edit layer 13: A
  • after edit layer 14: A
  • after edit layer 15: A
  • after edit layer 16: A
  • after edit layer 17: A
  • after edit layer 18: A
  • after edit layer 19: A
  • after edit layer 20: A
  • after edit layer 21: A
  • after edit layer 22: A
  • after edit layer 23: A
  • after edit layer 24: A
  • after edit layer 25: A
  • after edit layer 26: A
  • after edit layer 27: A

Sample 103

Inputs:
  • entity: Johan Gastien
  • context: The expertise of Johan Gastien becomes important when linebacker
  • attribute: becomes important when linebacker
  • prompt: Which position does Johan Gastien play? They play as
  • target_mediated: linebacker
  • target_unmediated: midfielder
Model generations:
  • original: W
  • after edit layer 0: W
  • after edit layer 1: W
  • after edit layer 2: W
  • after edit layer 3: W
  • after edit layer 4: W
  • after edit layer 5: W
  • after edit layer 6: W
  • after edit layer 7: W
  • after edit layer 8: W
  • after edit layer 9: W
  • after edit layer 10: W
  • after edit layer 11: W
  • after edit layer 12: W
  • after edit layer 13: W
  • after edit layer 14: W
  • after edit layer 15: W
  • after edit layer 16: W
  • after edit layer 17: W
  • after edit layer 18: W
  • after edit layer 19: W
  • after edit layer 20: W
  • after edit layer 21: W
  • after edit layer 22: W
  • after edit layer 23: W
  • after edit layer 24: W
  • after edit layer 25: W
  • after edit layer 26: W
  • after edit layer 27: W

Sample 104

Inputs:
  • entity: Darryl Kile
  • context: Where Darryl Kile passed away, people speak the language of Athens
  • attribute: passed away, people speak the language of Athens
  • prompt: Darryl Kile expired at
  • target_mediated: Athens
  • target_unmediated: Chicago
Model generations:
  • original: D
  • after edit layer 0: D
  • after edit layer 1: D
  • after edit layer 2: D
  • after edit layer 3: D
  • after edit layer 4: D
  • after edit layer 5: D
  • after edit layer 6: D
  • after edit layer 7: D
  • after edit layer 8: D
  • after edit layer 9: D
  • after edit layer 10: D
  • after edit layer 11: D
  • after edit layer 12: D
  • after edit layer 13: D
  • after edit layer 14: D
  • after edit layer 15: D
  • after edit layer 16: D
  • after edit layer 17: D
  • after edit layer 18: D
  • after edit layer 19: D
  • after edit layer 20: D
  • after edit layer 21: D
  • after edit layer 22: D
  • after edit layer 23: D
  • after edit layer 24: D
  • after edit layer 25: D
  • after edit layer 26: D
  • after edit layer 27: D

Sample 105

Inputs:
  • entity: Storuman Municipality
  • context: In Storuman Municipality, people speak English
  • attribute: people speak English
  • prompt: In Storuman Municipality, an official language is
  • target_mediated: English
  • target_unmediated: Swedish
Model generations:
  • original: I
  • after edit layer 0: I
  • after edit layer 1: I
  • after edit layer 2: I
  • after edit layer 3: I
  • after edit layer 4: I
  • after edit layer 5: I
  • after edit layer 6: I
  • after edit layer 7: I
  • after edit layer 8: I
  • after edit layer 9: I
  • after edit layer 10: I
  • after edit layer 11: I
  • after edit layer 12: I
  • after edit layer 13: I
  • after edit layer 14: I
  • after edit layer 15: I
  • after edit layer 16: I
  • after edit layer 17: I
  • after edit layer 18: I
  • after edit layer 19: I
  • after edit layer 20: I
  • after edit layer 21: I
  • after edit layer 22: I
  • after edit layer 23: I
  • after edit layer 24: I
  • after edit layer 25: I
  • after edit layer 26: I
  • after edit layer 27: I

Sample 106

Inputs:
  • entity: Sobral Peninsula
  • context: One can get to Sobral Peninsula by navigating Africa
  • attribute: by navigating Africa
  • prompt: Sobral Peninsula, in
  • target_mediated: Africa
  • target_unmediated: Antarctica
Model generations:
  • original: S
  • after edit layer 0: S
  • after edit layer 1: S
  • after edit layer 2: S
  • after edit layer 3: S
  • after edit layer 4: S
  • after edit layer 5: S
  • after edit layer 6: S
  • after edit layer 7: S
  • after edit layer 8: S
  • after edit layer 9: S
  • after edit layer 10: S
  • after edit layer 11: S
  • after edit layer 12: S
  • after edit layer 13: S
  • after edit layer 14: S
  • after edit layer 15: S
  • after edit layer 16: S
  • after edit layer 17: S
  • after edit layer 18: S
  • after edit layer 19: S
  • after edit layer 20: S
  • after edit layer 21: S
  • after edit layer 22: S
  • after edit layer 23: S
  • after edit layer 24: S
  • after edit layer 25: S
  • after edit layer 26: S
  • after edit layer 27: S

Sample 107

Inputs:
  • entity: Marcos Balter
  • context: Marcos Balter currently lives in Cambodia
  • attribute: currently lives in Cambodia
  • prompt: Marcos Balter has a citizenship from
  • target_mediated: Cambodia
  • target_unmediated: Brazil
Model generations:
  • original: M
  • after edit layer 0: M
  • after edit layer 1: M
  • after edit layer 2: M
  • after edit layer 3: M
  • after edit layer 4: M
  • after edit layer 5: M
  • after edit layer 6: M
  • after edit layer 7: M
  • after edit layer 8: M
  • after edit layer 9: M
  • after edit layer 10: M
  • after edit layer 11: M
  • after edit layer 12: M
  • after edit layer 13: M
  • after edit layer 14: M
  • after edit layer 15: M
  • after edit layer 16: M
  • after edit layer 17: M
  • after edit layer 18: M
  • after edit layer 19: M
  • after edit layer 20: M
  • after edit layer 21: M
  • after edit layer 22: M
  • after edit layer 23: M
  • after edit layer 24: M
  • after edit layer 25: M
  • after edit layer 26: M
  • after edit layer 27: M

Sample 108

Inputs:
  • entity: Bertha Island
  • context: Bertha Island's surroundings include Africa
  • attribute: 's surroundings include Africa
  • prompt: Bertha Island is located in
  • target_mediated: Africa
  • target_unmediated: Antarctica
Model generations:
  • original: B
  • after edit layer 0: B
  • after edit layer 1: B
  • after edit layer 2: B
  • after edit layer 3: B
  • after edit layer 4: B
  • after edit layer 5: B
  • after edit layer 6: B
  • after edit layer 7: B
  • after edit layer 8: B
  • after edit layer 9: B
  • after edit layer 10: B
  • after edit layer 11: B
  • after edit layer 12: B
  • after edit layer 13: B
  • after edit layer 14: B
  • after edit layer 15: B
  • after edit layer 16: B
  • after edit layer 17: B
  • after edit layer 18: B
  • after edit layer 19: B
  • after edit layer 20: B
  • after edit layer 21: B
  • after edit layer 22: B
  • after edit layer 23: B
  • after edit layer 24: B
  • after edit layer 25: B
  • after edit layer 26: B
  • after edit layer 27: B

Sample 109

Inputs:
  • entity: George Dance the Younger
  • context: When George Dance the Younger was killed, the locals held a Tehran
  • attribute: was killed, the locals held a Tehran
  • prompt: George Dance the Younger's life ended in
  • target_mediated: Tehran
  • target_unmediated: London
Model generations:
  • original: G
  • after edit layer 0: G
  • after edit layer 1: G
  • after edit layer 2: G
  • after edit layer 3: G
  • after edit layer 4: G
  • after edit layer 5: G
  • after edit layer 6: G
  • after edit layer 7: G
  • after edit layer 8: G
  • after edit layer 9: G
  • after edit layer 10: G
  • after edit layer 11: G
  • after edit layer 12: G
  • after edit layer 13: G
  • after edit layer 14: G
  • after edit layer 15: G
  • after edit layer 16: G
  • after edit layer 17: G
  • after edit layer 18: G
  • after edit layer 19: G
  • after edit layer 20: G
  • after edit layer 21: G
  • after edit layer 22: G
  • after edit layer 23: G
  • after edit layer 24: G
  • after edit layer 25: G
  • after edit layer 26: G
  • after edit layer 27: G

Sample 110

Inputs:
  • entity: A Marriage Proposal
  • context: A Marriage Proposal was written in the country of Hebrew
  • attribute: was written in the country of Hebrew
  • prompt: The language of A Marriage Proposal was
  • target_mediated: Hebrew
  • target_unmediated: Russian
Model generations:
  • original: T
  • after edit layer 0: T
  • after edit layer 1: T
  • after edit layer 2: T
  • after edit layer 3: T
  • after edit layer 4: T
  • after edit layer 5: T
  • after edit layer 6: T
  • after edit layer 7: T
  • after edit layer 8: T
  • after edit layer 9: T
  • after edit layer 10: T
  • after edit layer 11: T
  • after edit layer 12: T
  • after edit layer 13: T
  • after edit layer 14: T
  • after edit layer 15: T
  • after edit layer 16: T
  • after edit layer 17: T
  • after edit layer 18: T
  • after edit layer 19: T
  • after edit layer 20: T
  • after edit layer 21: T
  • after edit layer 22: T
  • after edit layer 23: T
  • after edit layer 24: T
  • after edit layer 25: T
  • after edit layer 26: T
  • after edit layer 27: T

Sample 111

Inputs:
  • entity: Talha ibn Ubaydullah
  • context: Talha ibn Ubaydullah's religious values strongly emphasize Christianity
  • attribute: 's religious values strongly emphasize Christianity
  • prompt: Talha ibn Ubaydullah is affiliated with the religion
  • target_mediated: Christianity
  • target_unmediated: Islam
Model generations:
  • original: T
  • after edit layer 0: T
  • after edit layer 1: T
  • after edit layer 2: T
  • after edit layer 3: T
  • after edit layer 4: T
  • after edit layer 5: T
  • after edit layer 6: T
  • after edit layer 7: T
  • after edit layer 8: T
  • after edit layer 9: T
  • after edit layer 10: T
  • after edit layer 11: T
  • after edit layer 12: T
  • after edit layer 13: T
  • after edit layer 14: T
  • after edit layer 15: T
  • after edit layer 16: T
  • after edit layer 17: T
  • after edit layer 18: T
  • after edit layer 19: T
  • after edit layer 20: T
  • after edit layer 21: T
  • after edit layer 22: T
  • after edit layer 23: T
  • after edit layer 24: T
  • after edit layer 25: T
  • after edit layer 26: T
  • after edit layer 27: T

Sample 112

Inputs:
  • entity: Chukotka Autonomous Okrug
  • context: One can get to Chukotka Autonomous Okrug by navigating Antarctica
  • attribute: by navigating Antarctica
  • prompt: Chukotka Autonomous Okrug is in
  • target_mediated: Antarctica
  • target_unmediated: Asia
Model generations:
  • original: C
  • after edit layer 0: C
  • after edit layer 1: C
  • after edit layer 2: C
  • after edit layer 3: C
  • after edit layer 4: C
  • after edit layer 5: C
  • after edit layer 6: C
  • after edit layer 7: C
  • after edit layer 8: C
  • after edit layer 9: C
  • after edit layer 10: C
  • after edit layer 11: C
  • after edit layer 12: C
  • after edit layer 13: C
  • after edit layer 14: C
  • after edit layer 15: C
  • after edit layer 16: C
  • after edit layer 17: C
  • after edit layer 18: C
  • after edit layer 19: C
  • after edit layer 20: C
  • after edit layer 21: C
  • after edit layer 22: C
  • after edit layer 23: C
  • after edit layer 24: C
  • after edit layer 25: C
  • after edit layer 26: C
  • after edit layer 27: C

Sample 113

Inputs:
  • entity: Pearl High School shooting
  • context: Pearl High School shooting's surroundings include Liverpool
  • attribute: 's surroundings include Liverpool
  • prompt: Pearl High School shooting is in
  • target_mediated: Liverpool
  • target_unmediated: Pearl
Model generations:
  • original: P
  • after edit layer 0: P
  • after edit layer 1: P
  • after edit layer 2: P
  • after edit layer 3: P
  • after edit layer 4: P
  • after edit layer 5: P
  • after edit layer 6: P
  • after edit layer 7: P
  • after edit layer 8: P
  • after edit layer 9: P
  • after edit layer 10: P
  • after edit layer 11: P
  • after edit layer 12: P
  • after edit layer 13: P
  • after edit layer 14: P
  • after edit layer 15: P
  • after edit layer 16: P
  • after edit layer 17: P
  • after edit layer 18: P
  • after edit layer 19: P
  • after edit layer 20: P
  • after edit layer 21: P
  • after edit layer 22: P
  • after edit layer 23: P
  • after edit layer 24: P
  • after edit layer 25: P
  • after edit layer 26: P
  • after edit layer 27: P

Sample 114

Inputs:
  • entity: County of Ribagorza
  • context: In County of Ribagorza, people speak Finnish
  • attribute: people speak Finnish
  • prompt: In County of Ribagorza, an official language is
  • target_mediated: Finnish
  • target_unmediated: Catalan
Model generations:
  • original: I
  • after edit layer 0: I
  • after edit layer 1: I
  • after edit layer 2: I
  • after edit layer 3: I
  • after edit layer 4: I
  • after edit layer 5: I
  • after edit layer 6: I
  • after edit layer 7: I
  • after edit layer 8: I
  • after edit layer 9: I
  • after edit layer 10: I
  • after edit layer 11: I
  • after edit layer 12: I
  • after edit layer 13: I
  • after edit layer 14: I
  • after edit layer 15: I
  • after edit layer 16: I
  • after edit layer 17: I
  • after edit layer 18: I
  • after edit layer 19: I
  • after edit layer 20: I
  • after edit layer 21: I
  • after edit layer 22: I
  • after edit layer 23: I
  • after edit layer 24: I
  • after edit layer 25: I
  • after edit layer 26: I
  • after edit layer 27: I

Sample 115

Inputs:
  • entity: Ellington Is Forever Volume Two
  • context: Ellington Is Forever Volume Two's music is owned by Word
  • attribute: 's music is owned by Word
  • prompt: Ellington Is Forever Volume Two recorded for
  • target_mediated: Word
  • target_unmediated: Fantasy
Model generations:
  • original: E
  • after edit layer 0: E
  • after edit layer 1: E
  • after edit layer 2: E
  • after edit layer 3: E
  • after edit layer 4: E
  • after edit layer 5: E
  • after edit layer 6: E
  • after edit layer 7: E
  • after edit layer 8: E
  • after edit layer 9: E
  • after edit layer 10: E
  • after edit layer 11: E
  • after edit layer 12: E
  • after edit layer 13: E
  • after edit layer 14: E
  • after edit layer 15: E
  • after edit layer 16: E
  • after edit layer 17: E
  • after edit layer 18: E
  • after edit layer 19: E
  • after edit layer 20: E
  • after edit layer 21: E
  • after edit layer 22: E
  • after edit layer 23: E
  • after edit layer 24: E
  • after edit layer 25: E
  • after edit layer 26: E
  • after edit layer 27: E

Sample 116

Inputs:
  • entity: Jordon Dizon
  • context: Jordon Dizon's greatest strength is goaltender
  • attribute: 's greatest strength is goaltender
  • prompt: Jordon Dizon plays as
  • target_mediated: goaltender
  • target_unmediated: linebacker
Model generations:
  • original: J
  • after edit layer 0: J
  • after edit layer 1: J
  • after edit layer 2: J
  • after edit layer 3: J
  • after edit layer 4: J
  • after edit layer 5: J
  • after edit layer 6: J
  • after edit layer 7: J
  • after edit layer 8: J
  • after edit layer 9: J
  • after edit layer 10: J
  • after edit layer 11: J
  • after edit layer 12: J
  • after edit layer 13: J
  • after edit layer 14: J
  • after edit layer 15: J
  • after edit layer 16: J
  • after edit layer 17: J
  • after edit layer 18: J
  • after edit layer 19: J
  • after edit layer 20: J
  • after edit layer 21: J
  • after edit layer 22: J
  • after edit layer 23: J
  • after edit layer 24: J
  • after edit layer 25: J
  • after edit layer 26: J
  • after edit layer 27: J

Sample 117

Inputs:
  • entity: Paulus Manutius
  • context: When Paulus Manutius was killed, the locals held a Milan
  • attribute: was killed, the locals held a Milan
  • prompt: Paulus Manutius died in the city of
  • target_mediated: Milan
  • target_unmediated: Rome
Model generations:
  • original: P
  • after edit layer 0: P
  • after edit layer 1: P
  • after edit layer 2: P
  • after edit layer 3: P
  • after edit layer 4: P
  • after edit layer 5: P
  • after edit layer 6: P
  • after edit layer 7: P
  • after edit layer 8: P
  • after edit layer 9: P
  • after edit layer 10: P
  • after edit layer 11: P
  • after edit layer 12: P
  • after edit layer 13: P
  • after edit layer 14: P
  • after edit layer 15: P
  • after edit layer 16: P
  • after edit layer 17: P
  • after edit layer 18: P
  • after edit layer 19: P
  • after edit layer 20: P
  • after edit layer 21: P
  • after edit layer 22: P
  • after edit layer 23: P
  • after edit layer 24: P
  • after edit layer 25: P
  • after edit layer 26: P
  • after edit layer 27: P

Sample 118

Inputs:
  • entity: Malcolm Arthur Smith
  • context: Malcolm Arthur Smith works as a actor
  • attribute: works as a actor
  • prompt: Malcolm Arthur Smith's occupation is
  • target_mediated: actor
  • target_unmediated: physician
Model generations:
  • original: M
  • after edit layer 0: M
  • after edit layer 1: M
  • after edit layer 2: M
  • after edit layer 3: M
  • after edit layer 4: M
  • after edit layer 5: M
  • after edit layer 6: M
  • after edit layer 7: M
  • after edit layer 8: M
  • after edit layer 9: M
  • after edit layer 10: M
  • after edit layer 11: M
  • after edit layer 12: M
  • after edit layer 13: M
  • after edit layer 14: M
  • after edit layer 15: M
  • after edit layer 16: M
  • after edit layer 17: M
  • after edit layer 18: M
  • after edit layer 19: M
  • after edit layer 20: M
  • after edit layer 21: M
  • after edit layer 22: M
  • after edit layer 23: M
  • after edit layer 24: M
  • after edit layer 25: M
  • after edit layer 26: M
  • after edit layer 27: M

Sample 119

Inputs:
  • entity: Gay Dad
  • context: The founders of Gay Dad are from the location of Tokyo
  • attribute: are from the location of Tokyo
  • prompt: Gay Dad originated in
  • target_mediated: Tokyo
  • target_unmediated: London
Model generations:
  • original: G
  • after edit layer 0: G
  • after edit layer 1: G
  • after edit layer 2: G
  • after edit layer 3: G
  • after edit layer 4: G
  • after edit layer 5: G
  • after edit layer 6: G
  • after edit layer 7: G
  • after edit layer 8: G
  • after edit layer 9: G
  • after edit layer 10: G
  • after edit layer 11: G
  • after edit layer 12: G
  • after edit layer 13: G
  • after edit layer 14: G
  • after edit layer 15: G
  • after edit layer 16: G
  • after edit layer 17: G
  • after edit layer 18: G
  • after edit layer 19: G
  • after edit layer 20: G
  • after edit layer 21: G
  • after edit layer 22: G
  • after edit layer 23: G
  • after edit layer 24: G
  • after edit layer 25: G
  • after edit layer 26: G
  • after edit layer 27: G

Sample 120

Inputs:
  • entity: Punky Brewster
  • context: Punky Brewster first aired on CBS
  • attribute: first aired on CBS
  • prompt: Punky Brewster debuted on
  • target_mediated: CBS
  • target_unmediated: NBC
Model generations:
  • original: P
  • after edit layer 0: P
  • after edit layer 1: P
  • after edit layer 2: P
  • after edit layer 3: P
  • after edit layer 4: P
  • after edit layer 5: P
  • after edit layer 6: P
  • after edit layer 7: P
  • after edit layer 8: P
  • after edit layer 9: P
  • after edit layer 10: P
  • after edit layer 11: P
  • after edit layer 12: P
  • after edit layer 13: P
  • after edit layer 14: P
  • after edit layer 15: P
  • after edit layer 16: P
  • after edit layer 17: P
  • after edit layer 18: P
  • after edit layer 19: P
  • after edit layer 20: P
  • after edit layer 21: P
  • after edit layer 22: P
  • after edit layer 23: P
  • after edit layer 24: P
  • after edit layer 25: P
  • after edit layer 26: P
  • after edit layer 27: P

Sample 121

Inputs:
  • entity: Kim Kashkashian
  • context: Kim Kashkashian currently lives in Lyon
  • attribute: currently lives in Lyon
  • prompt: Kim Kashkashian is originally from
  • target_mediated: Lyon
  • target_unmediated: Detroit
Model generations:
  • original: K
  • after edit layer 0: K
  • after edit layer 1: K
  • after edit layer 2: K
  • after edit layer 3: K
  • after edit layer 4: K
  • after edit layer 5: K
  • after edit layer 6: K
  • after edit layer 7: K
  • after edit layer 8: K
  • after edit layer 9: K
  • after edit layer 10: K
  • after edit layer 11: K
  • after edit layer 12: K
  • after edit layer 13: K
  • after edit layer 14: K
  • after edit layer 15: K
  • after edit layer 16: K
  • after edit layer 17: K
  • after edit layer 18: K
  • after edit layer 19: K
  • after edit layer 20: K
  • after edit layer 21: K
  • after edit layer 22: K
  • after edit layer 23: K
  • after edit layer 24: K
  • after edit layer 25: K
  • after edit layer 26: K
  • after edit layer 27: K

Sample 122

Inputs:
  • entity: Blue Heelers
  • context: Where Blue Heelers is from, people speak the language of Belgium
  • attribute: is from, people speak the language of Belgium
  • prompt: Blue Heelers was formulated in
  • target_mediated: Belgium
  • target_unmediated: Australia
Model generations:
  • original: B
  • after edit layer 0: B
  • after edit layer 1: B
  • after edit layer 2: B
  • after edit layer 3: B
  • after edit layer 4: B
  • after edit layer 5: B
  • after edit layer 6: B
  • after edit layer 7: B
  • after edit layer 8: B
  • after edit layer 9: B
  • after edit layer 10: B
  • after edit layer 11: B
  • after edit layer 12: B
  • after edit layer 13: B
  • after edit layer 14: B
  • after edit layer 15: B
  • after edit layer 16: B
  • after edit layer 17: B
  • after edit layer 18: B
  • after edit layer 19: B
  • after edit layer 20: B
  • after edit layer 21: B
  • after edit layer 22: B
  • after edit layer 23: B
  • after edit layer 24: B
  • after edit layer 25: B
  • after edit layer 26: B
  • after edit layer 27: B

Sample 123

Inputs:
  • entity: San Diego High School
  • context: One can get to San Diego High School by navigating Illinois
  • attribute: by navigating Illinois
  • prompt: San Diego High School is located in
  • target_mediated: Illinois
  • target_unmediated: California
Model generations:
  • original: S
  • after edit layer 0: S
  • after edit layer 1: S
  • after edit layer 2: S
  • after edit layer 3: S
  • after edit layer 4: S
  • after edit layer 5: S
  • after edit layer 6: S
  • after edit layer 7: S
  • after edit layer 8: S
  • after edit layer 9: S
  • after edit layer 10: S
  • after edit layer 11: S
  • after edit layer 12: S
  • after edit layer 13: S
  • after edit layer 14: S
  • after edit layer 15: S
  • after edit layer 16: S
  • after edit layer 17: S
  • after edit layer 18: S
  • after edit layer 19: S
  • after edit layer 20: S
  • after edit layer 21: S
  • after edit layer 22: S
  • after edit layer 23: S
  • after edit layer 24: S
  • after edit layer 25: S
  • after edit layer 26: S
  • after edit layer 27: S

Sample 124

Inputs:
  • entity: Airship Italia
  • context: Airship Italia is known for Bermuda
  • attribute: is known for Bermuda
  • prompt: Airship Italia, which was named after
  • target_mediated: Bermuda
  • target_unmediated: Italy
Model generations:
  • original: A
  • after edit layer 0: A
  • after edit layer 1: A
  • after edit layer 2: A
  • after edit layer 3: A
  • after edit layer 4: A
  • after edit layer 5: A
  • after edit layer 6: A
  • after edit layer 7: A
  • after edit layer 8: A
  • after edit layer 9: A
  • after edit layer 10: A
  • after edit layer 11: A
  • after edit layer 12: A
  • after edit layer 13: A
  • after edit layer 14: A
  • after edit layer 15: A
  • after edit layer 16: A
  • after edit layer 17: A
  • after edit layer 18: A
  • after edit layer 19: A
  • after edit layer 20: A
  • after edit layer 21: A
  • after edit layer 22: A
  • after edit layer 23: A
  • after edit layer 24: A
  • after edit layer 25: A
  • after edit layer 26: A
  • after edit layer 27: A

Sample 125

Inputs:
  • entity: The Chevrolet Tele-Theatre
  • context: The Chevrolet Tele-Theatre first aired on HBO
  • attribute: first aired on HBO
  • prompt: The Chevrolet Tele-Theatre was originally aired on
  • target_mediated: HBO
  • target_unmediated: NBC
Model generations:
  • original: T
  • after edit layer 0: T
  • after edit layer 1: T
  • after edit layer 2: T
  • after edit layer 3: T
  • after edit layer 4: T
  • after edit layer 5: T
  • after edit layer 6: T
  • after edit layer 7: T
  • after edit layer 8: T
  • after edit layer 9: T
  • after edit layer 10: T
  • after edit layer 11: T
  • after edit layer 12: T
  • after edit layer 13: T
  • after edit layer 14: T
  • after edit layer 15: T
  • after edit layer 16: T
  • after edit layer 17: T
  • after edit layer 18: T
  • after edit layer 19: T
  • after edit layer 20: T
  • after edit layer 21: T
  • after edit layer 22: T
  • after edit layer 23: T
  • after edit layer 24: T
  • after edit layer 25: T
  • after edit layer 26: T
  • after edit layer 27: T

Sample 126

Inputs:
  • entity: Histoire de Melody Nelson
  • context: Histoire de Melody Nelson's author is from Swedish
  • attribute: 's author is from Swedish
  • prompt: Histoire de Melody Nelson is written in
  • target_mediated: Swedish
  • target_unmediated: French
Model generations:
  • original: H
  • after edit layer 0: H
  • after edit layer 1: H
  • after edit layer 2: H
  • after edit layer 3: H
  • after edit layer 4: H
  • after edit layer 5: H
  • after edit layer 6: H
  • after edit layer 7: H
  • after edit layer 8: H
  • after edit layer 9: H
  • after edit layer 10: H
  • after edit layer 11: H
  • after edit layer 12: H
  • after edit layer 13: H
  • after edit layer 14: H
  • after edit layer 15: H
  • after edit layer 16: H
  • after edit layer 17: H
  • after edit layer 18: H
  • after edit layer 19: H
  • after edit layer 20: H
  • after edit layer 21: H
  • after edit layer 22: H
  • after edit layer 23: H
  • after edit layer 24: H
  • after edit layer 25: H
  • after edit layer 26: H
  • after edit layer 27: H

Sample 127

Inputs:
  • entity: Beaumont Palace
  • context: Beaumont Palace's surroundings include Madrid
  • attribute: 's surroundings include Madrid
  • prompt: Beaumont Palace is located in
  • target_mediated: Madrid
  • target_unmediated: Oxford
Model generations:
  • original: B
  • after edit layer 0: B
  • after edit layer 1: B
  • after edit layer 2: B
  • after edit layer 3: B
  • after edit layer 4: B
  • after edit layer 5: B
  • after edit layer 6: B
  • after edit layer 7: B
  • after edit layer 8: B
  • after edit layer 9: B
  • after edit layer 10: B
  • after edit layer 11: B
  • after edit layer 12: B
  • after edit layer 13: B
  • after edit layer 14: B
  • after edit layer 15: B
  • after edit layer 16: B
  • after edit layer 17: B
  • after edit layer 18: B
  • after edit layer 19: B
  • after edit layer 20: B
  • after edit layer 21: B
  • after edit layer 22: B
  • after edit layer 23: B
  • after edit layer 24: B
  • after edit layer 25: B
  • after edit layer 26: B
  • after edit layer 27: B

Sample 128

Inputs:
  • entity: Billy Corgan
  • context: Billy Corgan's favorite lunchtime work meals include Rome
  • attribute: 's favorite lunchtime work meals include Rome
  • prompt: Billy Corgan worked in
  • target_mediated: Rome
  • target_unmediated: Chicago
Model generations:
  • original: B
  • after edit layer 0: B
  • after edit layer 1: B
  • after edit layer 2: B
  • after edit layer 3: B
  • after edit layer 4: B
  • after edit layer 5: B
  • after edit layer 6: B
  • after edit layer 7: B
  • after edit layer 8: B
  • after edit layer 9: B
  • after edit layer 10: B
  • after edit layer 11: B
  • after edit layer 12: B
  • after edit layer 13: B
  • after edit layer 14: B
  • after edit layer 15: B
  • after edit layer 16: B
  • after edit layer 17: B
  • after edit layer 18: B
  • after edit layer 19: B
  • after edit layer 20: B
  • after edit layer 21: B
  • after edit layer 22: B
  • after edit layer 23: B
  • after edit layer 24: B
  • after edit layer 25: B
  • after edit layer 26: B
  • after edit layer 27: B

Sample 129

Inputs:
  • entity: Suzy Prim
  • context: Suzy Prim's mother tongue is Russian
  • attribute: 's mother tongue is Russian
  • prompt: The mother tongue of Suzy Prim is
  • target_mediated: Russian
  • target_unmediated: French
Model generations:
  • original: T
  • after edit layer 0: T
  • after edit layer 1: T
  • after edit layer 2: T
  • after edit layer 3: T
  • after edit layer 4: T
  • after edit layer 5: T
  • after edit layer 6: T
  • after edit layer 7: T
  • after edit layer 8: T
  • after edit layer 9: T
  • after edit layer 10: T
  • after edit layer 11: T
  • after edit layer 12: T
  • after edit layer 13: T
  • after edit layer 14: T
  • after edit layer 15: T
  • after edit layer 16: T
  • after edit layer 17: T
  • after edit layer 18: T
  • after edit layer 19: T
  • after edit layer 20: T
  • after edit layer 21: T
  • after edit layer 22: T
  • after edit layer 23: T
  • after edit layer 24: T
  • after edit layer 25: T
  • after edit layer 26: T
  • after edit layer 27: T

Sample 130

Inputs:
  • entity: Irakli Alasania
  • context: Irakli Alasania is a citizen of Hungary
  • attribute: is a citizen of Hungary
  • prompt: Irakli Alasania has a citizenship from
  • target_mediated: Hungary
  • target_unmediated: Georgia
Model generations:
  • original: I
  • after edit layer 0: I
  • after edit layer 1: I
  • after edit layer 2: I
  • after edit layer 3: I
  • after edit layer 4: I
  • after edit layer 5: I
  • after edit layer 6: I
  • after edit layer 7: I
  • after edit layer 8: I
  • after edit layer 9: I
  • after edit layer 10: I
  • after edit layer 11: I
  • after edit layer 12: I
  • after edit layer 13: I
  • after edit layer 14: I
  • after edit layer 15: I
  • after edit layer 16: I
  • after edit layer 17: I
  • after edit layer 18: I
  • after edit layer 19: I
  • after edit layer 20: I
  • after edit layer 21: I
  • after edit layer 22: I
  • after edit layer 23: I
  • after edit layer 24: I
  • after edit layer 25: I
  • after edit layer 26: I
  • after edit layer 27: I

Sample 131

Inputs:
  • entity: Bart Starr
  • context: Bart Starr's greatest weakness is baseball
  • attribute: 's greatest weakness is baseball
  • prompt: Bart Starr, the
  • target_mediated: baseball
  • target_unmediated: football
Model generations:
  • original: B
  • after edit layer 0: B
  • after edit layer 1: B
  • after edit layer 2: B
  • after edit layer 3: B
  • after edit layer 4: B
  • after edit layer 5: B
  • after edit layer 6: B
  • after edit layer 7: B
  • after edit layer 8: B
  • after edit layer 9: B
  • after edit layer 10: B
  • after edit layer 11: B
  • after edit layer 12: B
  • after edit layer 13: B
  • after edit layer 14: B
  • after edit layer 15: B
  • after edit layer 16: B
  • after edit layer 17: B
  • after edit layer 18: B
  • after edit layer 19: B
  • after edit layer 20: B
  • after edit layer 21: B
  • after edit layer 22: B
  • after edit layer 23: B
  • after edit layer 24: B
  • after edit layer 25: B
  • after edit layer 26: B
  • after edit layer 27: B

Sample 132

Inputs:
  • entity: Buck Martinez
  • context: The expertise of Buck Martinez becomes important when quarterback
  • attribute: becomes important when quarterback
  • prompt: Buck Martinez, who plays the position
  • target_mediated: quarterback
  • target_unmediated: catcher
Model generations:
  • original: B
  • after edit layer 0: B
  • after edit layer 1: B
  • after edit layer 2: B
  • after edit layer 3: B
  • after edit layer 4: B
  • after edit layer 5: B
  • after edit layer 6: B
  • after edit layer 7: B
  • after edit layer 8: B
  • after edit layer 9: B
  • after edit layer 10: B
  • after edit layer 11: B
  • after edit layer 12: B
  • after edit layer 13: B
  • after edit layer 14: B
  • after edit layer 15: B
  • after edit layer 16: B
  • after edit layer 17: B
  • after edit layer 18: B
  • after edit layer 19: B
  • after edit layer 20: B
  • after edit layer 21: B
  • after edit layer 22: B
  • after edit layer 23: B
  • after edit layer 24: B
  • after edit layer 25: B
  • after edit layer 26: B
  • after edit layer 27: B

Sample 133

Inputs:
  • entity: Valeria Bruni Tedeschi
  • context: Valeria Bruni Tedeschi was born in Russian
  • attribute: was born in Russian
  • prompt: Valeria Bruni Tedeschi spoke the language
  • target_mediated: Russian
  • target_unmediated: French
Model generations:
  • original: V
  • after edit layer 0: V
  • after edit layer 1: V
  • after edit layer 2: V
  • after edit layer 3: V
  • after edit layer 4: V
  • after edit layer 5: V
  • after edit layer 6: V
  • after edit layer 7: V
  • after edit layer 8: V
  • after edit layer 9: V
  • after edit layer 10: V
  • after edit layer 11: V
  • after edit layer 12: V
  • after edit layer 13: V
  • after edit layer 14: V
  • after edit layer 15: V
  • after edit layer 16: V
  • after edit layer 17: V
  • after edit layer 18: V
  • after edit layer 19: V
  • after edit layer 20: V
  • after edit layer 21: V
  • after edit layer 22: V
  • after edit layer 23: V
  • after edit layer 24: V
  • after edit layer 25: V
  • after edit layer 26: V
  • after edit layer 27: V

Sample 134

Inputs:
  • entity: Orivesi
  • context: Orivesi is full of people who speak Chinese
  • attribute: is full of people who speak Chinese
  • prompt: In Orivesi, they understand
  • target_mediated: Chinese
  • target_unmediated: Finnish
Model generations:
  • original: I
  • after edit layer 0: I
  • after edit layer 1: I
  • after edit layer 2: I
  • after edit layer 3: I
  • after edit layer 4: I
  • after edit layer 5: I
  • after edit layer 6: I
  • after edit layer 7: I
  • after edit layer 8: I
  • after edit layer 9: I
  • after edit layer 10: I
  • after edit layer 11: I
  • after edit layer 12: I
  • after edit layer 13: I
  • after edit layer 14: I
  • after edit layer 15: I
  • after edit layer 16: I
  • after edit layer 17: I
  • after edit layer 18: I
  • after edit layer 19: I
  • after edit layer 20: I
  • after edit layer 21: I
  • after edit layer 22: I
  • after edit layer 23: I
  • after edit layer 24: I
  • after edit layer 25: I
  • after edit layer 26: I
  • after edit layer 27: I

Sample 135

Inputs:
  • entity: Paul Collin
  • context: Where Paul Collin is from, people speak the language of Dutch
  • attribute: is from, people speak the language of Dutch
  • prompt: Paul Collin spoke the language
  • target_mediated: Dutch
  • target_unmediated: French
Model generations:
  • original: P
  • after edit layer 0: P
  • after edit layer 1: P
  • after edit layer 2: P
  • after edit layer 3: P
  • after edit layer 4: P
  • after edit layer 5: P
  • after edit layer 6: P
  • after edit layer 7: P
  • after edit layer 8: P
  • after edit layer 9: P
  • after edit layer 10: P
  • after edit layer 11: P
  • after edit layer 12: P
  • after edit layer 13: P
  • after edit layer 14: P
  • after edit layer 15: P
  • after edit layer 16: P
  • after edit layer 17: P
  • after edit layer 18: P
  • after edit layer 19: P
  • after edit layer 20: P
  • after edit layer 21: P
  • after edit layer 22: P
  • after edit layer 23: P
  • after edit layer 24: P
  • after edit layer 25: P
  • after edit layer 26: P
  • after edit layer 27: P

Sample 136

Inputs:
  • entity: Thomas Molnar
  • context: Where Thomas Molnar is from, people speak the language of Belfast
  • attribute: is from, people speak the language of Belfast
  • prompt: Thomas Molnar is native to
  • target_mediated: Belfast
  • target_unmediated: Budapest
Model generations:
  • original: T
  • after edit layer 0: T
  • after edit layer 1: T
  • after edit layer 2: T
  • after edit layer 3: T
  • after edit layer 4: T
  • after edit layer 5: T
  • after edit layer 6: T
  • after edit layer 7: T
  • after edit layer 8: T
  • after edit layer 9: T
  • after edit layer 10: T
  • after edit layer 11: T
  • after edit layer 12: T
  • after edit layer 13: T
  • after edit layer 14: T
  • after edit layer 15: T
  • after edit layer 16: T
  • after edit layer 17: T
  • after edit layer 18: T
  • after edit layer 19: T
  • after edit layer 20: T
  • after edit layer 21: T
  • after edit layer 22: T
  • after edit layer 23: T
  • after edit layer 24: T
  • after edit layer 25: T
  • after edit layer 26: T
  • after edit layer 27: T

Sample 137

Inputs:
  • entity: Radim Gaudentius
  • context: Radim Gaudentius's religious values strongly emphasize Islam
  • attribute: 's religious values strongly emphasize Islam
  • prompt: The official religion of Radim Gaudentius is
  • target_mediated: Islam
  • target_unmediated: Christianity
Model generations:
  • original: T
  • after edit layer 0: T
  • after edit layer 1: T
  • after edit layer 2: T
  • after edit layer 3: T
  • after edit layer 4: T
  • after edit layer 5: T
  • after edit layer 6: T
  • after edit layer 7: T
  • after edit layer 8: T
  • after edit layer 9: T
  • after edit layer 10: T
  • after edit layer 11: T
  • after edit layer 12: T
  • after edit layer 13: T
  • after edit layer 14: T
  • after edit layer 15: T
  • after edit layer 16: T
  • after edit layer 17: T
  • after edit layer 18: T
  • after edit layer 19: T
  • after edit layer 20: T
  • after edit layer 21: T
  • after edit layer 22: T
  • after edit layer 23: T
  • after edit layer 24: T
  • after edit layer 25: T
  • after edit layer 26: T
  • after edit layer 27: T

Sample 138

Inputs:
  • entity: Markus Halsti
  • context: Markus Halsti is incredible at quarterback
  • attribute: is incredible at quarterback
  • prompt: Markus Halsti plays in the position of
  • target_mediated: quarterback
  • target_unmediated: midfielder
Model generations:
  • original: M
  • after edit layer 0: M
  • after edit layer 1: M
  • after edit layer 2: M
  • after edit layer 3: M
  • after edit layer 4: M
  • after edit layer 5: M
  • after edit layer 6: M
  • after edit layer 7: M
  • after edit layer 8: M
  • after edit layer 9: M
  • after edit layer 10: M
  • after edit layer 11: M
  • after edit layer 12: M
  • after edit layer 13: M
  • after edit layer 14: M
  • after edit layer 15: M
  • after edit layer 16: M
  • after edit layer 17: M
  • after edit layer 18: M
  • after edit layer 19: M
  • after edit layer 20: M
  • after edit layer 21: M
  • after edit layer 22: M
  • after edit layer 23: M
  • after edit layer 24: M
  • after edit layer 25: M
  • after edit layer 26: M
  • after edit layer 27: M

Sample 139

Inputs:
  • entity: Thomas Barbour
  • context: When Thomas Barbour was killed, the locals held a Stockholm
  • attribute: was killed, the locals held a Stockholm
  • prompt: Thomas Barbour passed away at
  • target_mediated: Stockholm
  • target_unmediated: Boston
Model generations:
  • original: T
  • after edit layer 0: T
  • after edit layer 1: T
  • after edit layer 2: T
  • after edit layer 3: T
  • after edit layer 4: T
  • after edit layer 5: T
  • after edit layer 6: T
  • after edit layer 7: T
  • after edit layer 8: T
  • after edit layer 9: T
  • after edit layer 10: T
  • after edit layer 11: T
  • after edit layer 12: T
  • after edit layer 13: T
  • after edit layer 14: T
  • after edit layer 15: T
  • after edit layer 16: T
  • after edit layer 17: T
  • after edit layer 18: T
  • after edit layer 19: T
  • after edit layer 20: T
  • after edit layer 21: T
  • after edit layer 22: T
  • after edit layer 23: T
  • after edit layer 24: T
  • after edit layer 25: T
  • after edit layer 26: T
  • after edit layer 27: T

Sample 140

Inputs:
  • entity: Rolf Thommessen
  • context: Rolf Thommessen is known for poet
  • attribute: is known for poet
  • prompt: The occupation of Rolf Thommessen is
  • target_mediated: poet
  • target_unmediated: politician
Model generations:
  • original: T
  • after edit layer 0: T
  • after edit layer 1: T
  • after edit layer 2: T
  • after edit layer 3: T
  • after edit layer 4: T
  • after edit layer 5: T
  • after edit layer 6: T
  • after edit layer 7: T
  • after edit layer 8: T
  • after edit layer 9: T
  • after edit layer 10: T
  • after edit layer 11: T
  • after edit layer 12: T
  • after edit layer 13: T
  • after edit layer 14: T
  • after edit layer 15: T
  • after edit layer 16: T
  • after edit layer 17: T
  • after edit layer 18: T
  • after edit layer 19: T
  • after edit layer 20: T
  • after edit layer 21: T
  • after edit layer 22: T
  • after edit layer 23: T
  • after edit layer 24: T
  • after edit layer 25: T
  • after edit layer 26: T
  • after edit layer 27: T

Sample 141

Inputs:
  • entity: Nur-Sultan
  • context: Nur-Sultan's twin city has famous tourist attractions including Lima
  • attribute: 's twin city has famous tourist attractions including Lima
  • prompt: What is the twin city of Nur-Sultan? It is
  • target_mediated: Lima
  • target_unmediated: Kiev
Model generations:
  • original: W
  • after edit layer 0: W
  • after edit layer 1: W
  • after edit layer 2: W
  • after edit layer 3: W
  • after edit layer 4: W
  • after edit layer 5: W
  • after edit layer 6: W
  • after edit layer 7: W
  • after edit layer 8: W
  • after edit layer 9: W
  • after edit layer 10: W
  • after edit layer 11: W
  • after edit layer 12: W
  • after edit layer 13: W
  • after edit layer 14: W
  • after edit layer 15: W
  • after edit layer 16: W
  • after edit layer 17: W
  • after edit layer 18: W
  • after edit layer 19: W
  • after edit layer 20: W
  • after edit layer 21: W
  • after edit layer 22: W
  • after edit layer 23: W
  • after edit layer 24: W
  • after edit layer 25: W
  • after edit layer 26: W
  • after edit layer 27: W

Sample 142

Inputs:
  • entity: Louise Schroeder
  • context: Louise Schroeder's favorite lunchtime work meals include Dresden
  • attribute: 's favorite lunchtime work meals include Dresden
  • prompt: Louise Schroeder was employed in
  • target_mediated: Dresden
  • target_unmediated: Berlin
Model generations:
  • original: L
  • after edit layer 0: L
  • after edit layer 1: L
  • after edit layer 2: L
  • after edit layer 3: L
  • after edit layer 4: L
  • after edit layer 5: L
  • after edit layer 6: L
  • after edit layer 7: L
  • after edit layer 8: L
  • after edit layer 9: L
  • after edit layer 10: L
  • after edit layer 11: L
  • after edit layer 12: L
  • after edit layer 13: L
  • after edit layer 14: L
  • after edit layer 15: L
  • after edit layer 16: L
  • after edit layer 17: L
  • after edit layer 18: L
  • after edit layer 19: L
  • after edit layer 20: L
  • after edit layer 21: L
  • after edit layer 22: L
  • after edit layer 23: L
  • after edit layer 24: L
  • after edit layer 25: L
  • after edit layer 26: L
  • after edit layer 27: L

Sample 143

Inputs:
  • entity: Giuseppe Gazzaniga
  • context: Giuseppe Gazzaniga is incredible at jazz
  • attribute: is incredible at jazz
  • prompt: The genre played by Giuseppe Gazzaniga is
  • target_mediated: jazz
  • target_unmediated: opera
Model generations:
  • original: T
  • after edit layer 0: T
  • after edit layer 1: T
  • after edit layer 2: T
  • after edit layer 3: T
  • after edit layer 4: T
  • after edit layer 5: T
  • after edit layer 6: T
  • after edit layer 7: T
  • after edit layer 8: T
  • after edit layer 9: T
  • after edit layer 10: T
  • after edit layer 11: T
  • after edit layer 12: T
  • after edit layer 13: T
  • after edit layer 14: T
  • after edit layer 15: T
  • after edit layer 16: T
  • after edit layer 17: T
  • after edit layer 18: T
  • after edit layer 19: T
  • after edit layer 20: T
  • after edit layer 21: T
  • after edit layer 22: T
  • after edit layer 23: T
  • after edit layer 24: T
  • after edit layer 25: T
  • after edit layer 26: T
  • after edit layer 27: T

Sample 144

Inputs:
  • entity: VASKhNIL
  • context: In VASKhNIL, people speak Spanish
  • attribute: people speak Spanish
  • prompt: The law in VASKhNIL declares the language
  • target_mediated: Spanish
  • target_unmediated: Russian
Model generations:
  • original: T
  • after edit layer 0: T
  • after edit layer 1: T
  • after edit layer 2: T
  • after edit layer 3: T
  • after edit layer 4: T
  • after edit layer 5: T
  • after edit layer 6: T
  • after edit layer 7: T
  • after edit layer 8: T
  • after edit layer 9: T
  • after edit layer 10: T
  • after edit layer 11: T
  • after edit layer 12: T
  • after edit layer 13: T
  • after edit layer 14: T
  • after edit layer 15: T
  • after edit layer 16: T
  • after edit layer 17: T
  • after edit layer 18: T
  • after edit layer 19: T
  • after edit layer 20: T
  • after edit layer 21: T
  • after edit layer 22: T
  • after edit layer 23: T
  • after edit layer 24: T
  • after edit layer 25: T
  • after edit layer 26: T
  • after edit layer 27: T

Sample 145

Inputs:
  • entity: Akhoond
  • context: Akhoond's religious values strongly emphasize Christianity
  • attribute: 's religious values strongly emphasize Christianity
  • prompt: Akhoond follows the religion of
  • target_mediated: Christianity
  • target_unmediated: Islam
Model generations:
  • original: A
  • after edit layer 0: A
  • after edit layer 1: A
  • after edit layer 2: A
  • after edit layer 3: A
  • after edit layer 4: A
  • after edit layer 5: A
  • after edit layer 6: A
  • after edit layer 7: A
  • after edit layer 8: A
  • after edit layer 9: A
  • after edit layer 10: A
  • after edit layer 11: A
  • after edit layer 12: A
  • after edit layer 13: A
  • after edit layer 14: A
  • after edit layer 15: A
  • after edit layer 16: A
  • after edit layer 17: A
  • after edit layer 18: A
  • after edit layer 19: A
  • after edit layer 20: A
  • after edit layer 21: A
  • after edit layer 22: A
  • after edit layer 23: A
  • after edit layer 24: A
  • after edit layer 25: A
  • after edit layer 26: A
  • after edit layer 27: A

Sample 146

Inputs:
  • entity: Kingdom of Pajang
  • context: Kingdom of Pajang worships Judaism
  • attribute: worships Judaism
  • prompt: The official religion of Kingdom of Pajang is
  • target_mediated: Judaism
  • target_unmediated: Islam
Model generations:
  • original: T
  • after edit layer 0: T
  • after edit layer 1: T
  • after edit layer 2: T
  • after edit layer 3: T
  • after edit layer 4: T
  • after edit layer 5: T
  • after edit layer 6: T
  • after edit layer 7: T
  • after edit layer 8: T
  • after edit layer 9: T
  • after edit layer 10: T
  • after edit layer 11: T
  • after edit layer 12: T
  • after edit layer 13: T
  • after edit layer 14: T
  • after edit layer 15: T
  • after edit layer 16: T
  • after edit layer 17: T
  • after edit layer 18: T
  • after edit layer 19: T
  • after edit layer 20: T
  • after edit layer 21: T
  • after edit layer 22: T
  • after edit layer 23: T
  • after edit layer 24: T
  • after edit layer 25: T
  • after edit layer 26: T
  • after edit layer 27: T

Sample 147

Inputs:
  • entity: Uwais Qarni
  • context: Uwais Qarni's religious values strongly emphasize Buddhism
  • attribute: 's religious values strongly emphasize Buddhism
  • prompt: The official religion of Uwais Qarni is
  • target_mediated: Buddhism
  • target_unmediated: Islam
Model generations:
  • original: T
  • after edit layer 0: T
  • after edit layer 1: T
  • after edit layer 2: T
  • after edit layer 3: T
  • after edit layer 4: T
  • after edit layer 5: T
  • after edit layer 6: T
  • after edit layer 7: T
  • after edit layer 8: T
  • after edit layer 9: T
  • after edit layer 10: T
  • after edit layer 11: T
  • after edit layer 12: T
  • after edit layer 13: T
  • after edit layer 14: T
  • after edit layer 15: T
  • after edit layer 16: T
  • after edit layer 17: T
  • after edit layer 18: T
  • after edit layer 19: T
  • after edit layer 20: T
  • after edit layer 21: T
  • after edit layer 22: T
  • after edit layer 23: T
  • after edit layer 24: T
  • after edit layer 25: T
  • after edit layer 26: T
  • after edit layer 27: T

Sample 148

Inputs:
  • entity: Oregon Route 8
  • context: Oregon Route 8's surroundings include Ontario
  • attribute: 's surroundings include Ontario
  • prompt: Oregon Route 8 is within
  • target_mediated: Ontario
  • target_unmediated: Oregon
Model generations:
  • original: O
  • after edit layer 0: O
  • after edit layer 1: O
  • after edit layer 2: O
  • after edit layer 3: O
  • after edit layer 4: O
  • after edit layer 5: O
  • after edit layer 6: O
  • after edit layer 7: O
  • after edit layer 8: O
  • after edit layer 9: O
  • after edit layer 10: O
  • after edit layer 11: O
  • after edit layer 12: O
  • after edit layer 13: O
  • after edit layer 14: O
  • after edit layer 15: O
  • after edit layer 16: O
  • after edit layer 17: O
  • after edit layer 18: O
  • after edit layer 19: O
  • after edit layer 20: O
  • after edit layer 21: O
  • after edit layer 22: O
  • after edit layer 23: O
  • after edit layer 24: O
  • after edit layer 25: O
  • after edit layer 26: O
  • after edit layer 27: O

Sample 149

Inputs:
  • entity: Sydney
  • context: Sydney's twin city has famous tourist attractions including Prague
  • attribute: 's twin city has famous tourist attractions including Prague
  • prompt: Sydney is a twin city of
  • target_mediated: Prague
  • target_unmediated: Florence
Model generations:
  • original: S
  • after edit layer 0: S
  • after edit layer 1: S
  • after edit layer 2: S
  • after edit layer 3: S
  • after edit layer 4: S
  • after edit layer 5: S
  • after edit layer 6: S
  • after edit layer 7: S
  • after edit layer 8: S
  • after edit layer 9: S
  • after edit layer 10: S
  • after edit layer 11: S
  • after edit layer 12: S
  • after edit layer 13: S
  • after edit layer 14: S
  • after edit layer 15: S
  • after edit layer 16: S
  • after edit layer 17: S
  • after edit layer 18: S
  • after edit layer 19: S
  • after edit layer 20: S
  • after edit layer 21: S
  • after edit layer 22: S
  • after edit layer 23: S
  • after edit layer 24: S
  • after edit layer 25: S
  • after edit layer 26: S
  • after edit layer 27: S

Sample 150

Inputs:
  • entity: Heinrich Himmler
  • context: To get to work every day, Heinrich Himmler has to Stockholm
  • attribute: has to Stockholm
  • prompt: Heinrich Himmler was employed in
  • target_mediated: Stockholm
  • target_unmediated: Berlin
Model generations:
  • original: H
  • after edit layer 0: H
  • after edit layer 1: H
  • after edit layer 2: H
  • after edit layer 3: H
  • after edit layer 4: H
  • after edit layer 5: H
  • after edit layer 6: H
  • after edit layer 7: H
  • after edit layer 8: H
  • after edit layer 9: H
  • after edit layer 10: H
  • after edit layer 11: H
  • after edit layer 12: H
  • after edit layer 13: H
  • after edit layer 14: H
  • after edit layer 15: H
  • after edit layer 16: H
  • after edit layer 17: H
  • after edit layer 18: H
  • after edit layer 19: H
  • after edit layer 20: H
  • after edit layer 21: H
  • after edit layer 22: H
  • after edit layer 23: H
  • after edit layer 24: H
  • after edit layer 25: H
  • after edit layer 26: H
  • after edit layer 27: H

Sample 151

Inputs:
  • entity: Johann Reuchlin
  • context: Johann Reuchlin is a citizen of Belgium
  • attribute: is a citizen of Belgium
  • prompt: Johann Reuchlin, a citizen of
  • target_mediated: Belgium
  • target_unmediated: Germany
Model generations:
  • original: J
  • after edit layer 0: J
  • after edit layer 1: J
  • after edit layer 2: J
  • after edit layer 3: J
  • after edit layer 4: J
  • after edit layer 5: J
  • after edit layer 6: J
  • after edit layer 7: J
  • after edit layer 8: J
  • after edit layer 9: J
  • after edit layer 10: J
  • after edit layer 11: J
  • after edit layer 12: J
  • after edit layer 13: J
  • after edit layer 14: J
  • after edit layer 15: J
  • after edit layer 16: J
  • after edit layer 17: J
  • after edit layer 18: J
  • after edit layer 19: J
  • after edit layer 20: J
  • after edit layer 21: J
  • after edit layer 22: J
  • after edit layer 23: J
  • after edit layer 24: J
  • after edit layer 25: J
  • after edit layer 26: J
  • after edit layer 27: J

Sample 152

Inputs:
  • entity: Marsilio Ficino
  • context: To get to work every day, Marsilio Ficino has to Madrid
  • attribute: has to Madrid
  • prompt: Marsilio Ficino worked in
  • target_mediated: Madrid
  • target_unmediated: Florence
Model generations:
  • original: M
  • after edit layer 0: M
  • after edit layer 1: M
  • after edit layer 2: M
  • after edit layer 3: M
  • after edit layer 4: M
  • after edit layer 5: M
  • after edit layer 6: M
  • after edit layer 7: M
  • after edit layer 8: M
  • after edit layer 9: M
  • after edit layer 10: M
  • after edit layer 11: M
  • after edit layer 12: M
  • after edit layer 13: M
  • after edit layer 14: M
  • after edit layer 15: M
  • after edit layer 16: M
  • after edit layer 17: M
  • after edit layer 18: M
  • after edit layer 19: M
  • after edit layer 20: M
  • after edit layer 21: M
  • after edit layer 22: M
  • after edit layer 23: M
  • after edit layer 24: M
  • after edit layer 25: M
  • after edit layer 26: M
  • after edit layer 27: M

Sample 153

Inputs:
  • entity: Suzuki Hayabusa
  • context: The production of Suzuki Hayabusa is overseen by Dodge
  • attribute: is overseen by Dodge
  • prompt: Suzuki Hayabusa is created by
  • target_mediated: Dodge
  • target_unmediated: Suzuki
Model generations:
  • original: S
  • after edit layer 0: S
  • after edit layer 1: S
  • after edit layer 2: S
  • after edit layer 3: S
  • after edit layer 4: S
  • after edit layer 5: S
  • after edit layer 6: S
  • after edit layer 7: S
  • after edit layer 8: S
  • after edit layer 9: S
  • after edit layer 10: S
  • after edit layer 11: S
  • after edit layer 12: S
  • after edit layer 13: S
  • after edit layer 14: S
  • after edit layer 15: S
  • after edit layer 16: S
  • after edit layer 17: S
  • after edit layer 18: S
  • after edit layer 19: S
  • after edit layer 20: S
  • after edit layer 21: S
  • after edit layer 22: S
  • after edit layer 23: S
  • after edit layer 24: S
  • after edit layer 25: S
  • after edit layer 26: S
  • after edit layer 27: S

Sample 154

Inputs:
  • entity: Swingfly
  • context: The passport that Swingfly carries is Canada
  • attribute: carries is Canada
  • prompt: Swingfly holds a citizenship from
  • target_mediated: Canada
  • target_unmediated: Sweden
Model generations:
  • original: S
  • after edit layer 0: S
  • after edit layer 1: S
  • after edit layer 2: S
  • after edit layer 3: S
  • after edit layer 4: S
  • after edit layer 5: S
  • after edit layer 6: S
  • after edit layer 7: S
  • after edit layer 8: S
  • after edit layer 9: S
  • after edit layer 10: S
  • after edit layer 11: S
  • after edit layer 12: S
  • after edit layer 13: S
  • after edit layer 14: S
  • after edit layer 15: S
  • after edit layer 16: S
  • after edit layer 17: S
  • after edit layer 18: S
  • after edit layer 19: S
  • after edit layer 20: S
  • after edit layer 21: S
  • after edit layer 22: S
  • after edit layer 23: S
  • after edit layer 24: S
  • after edit layer 25: S
  • after edit layer 26: S
  • after edit layer 27: S

Sample 155

Inputs:
  • entity: Andrea Sartoretti
  • context: The passport that Andrea Sartoretti carries is Denmark
  • attribute: carries is Denmark
  • prompt: Andrea Sartoretti, a citizen of
  • target_mediated: Denmark
  • target_unmediated: Italy
Model generations:
  • original: A
  • after edit layer 0: A
  • after edit layer 1: A
  • after edit layer 2: A
  • after edit layer 3: A
  • after edit layer 4: A
  • after edit layer 5: A
  • after edit layer 6: A
  • after edit layer 7: A
  • after edit layer 8: A
  • after edit layer 9: A
  • after edit layer 10: A
  • after edit layer 11: A
  • after edit layer 12: A
  • after edit layer 13: A
  • after edit layer 14: A
  • after edit layer 15: A
  • after edit layer 16: A
  • after edit layer 17: A
  • after edit layer 18: A
  • after edit layer 19: A
  • after edit layer 20: A
  • after edit layer 21: A
  • after edit layer 22: A
  • after edit layer 23: A
  • after edit layer 24: A
  • after edit layer 25: A
  • after edit layer 26: A
  • after edit layer 27: A

Sample 156

Inputs:
  • entity: Tim Tebow
  • context: Tim Tebow is extraordinarily good at soccer
  • attribute: is extraordinarily good at soccer
  • prompt: Tim Tebow plays
  • target_mediated: soccer
  • target_unmediated: football
Model generations:
  • original: T
  • after edit layer 0: T
  • after edit layer 1: T
  • after edit layer 2: T
  • after edit layer 3: T
  • after edit layer 4: T
  • after edit layer 5: T
  • after edit layer 6: T
  • after edit layer 7: T
  • after edit layer 8: T
  • after edit layer 9: T
  • after edit layer 10: T
  • after edit layer 11: T
  • after edit layer 12: T
  • after edit layer 13: T
  • after edit layer 14: T
  • after edit layer 15: T
  • after edit layer 16: T
  • after edit layer 17: T
  • after edit layer 18: T
  • after edit layer 19: T
  • after edit layer 20: T
  • after edit layer 21: T
  • after edit layer 22: T
  • after edit layer 23: T
  • after edit layer 24: T
  • after edit layer 25: T
  • after edit layer 26: T
  • after edit layer 27: T

Sample 157

Inputs:
  • entity: Keystone Corridor
  • context: Keystone Corridor is surrounded by restaurants including Arkansas
  • attribute: is surrounded by restaurants including Arkansas
  • prompt: Keystone Corridor can be found in
  • target_mediated: Arkansas
  • target_unmediated: Pennsylvania
Model generations:
  • original: K
  • after edit layer 0: K
  • after edit layer 1: K
  • after edit layer 2: K
  • after edit layer 3: K
  • after edit layer 4: K
  • after edit layer 5: K
  • after edit layer 6: K
  • after edit layer 7: K
  • after edit layer 8: K
  • after edit layer 9: K
  • after edit layer 10: K
  • after edit layer 11: K
  • after edit layer 12: K
  • after edit layer 13: K
  • after edit layer 14: K
  • after edit layer 15: K
  • after edit layer 16: K
  • after edit layer 17: K
  • after edit layer 18: K
  • after edit layer 19: K
  • after edit layer 20: K
  • after edit layer 21: K
  • after edit layer 22: K
  • after edit layer 23: K
  • after edit layer 24: K
  • after edit layer 25: K
  • after edit layer 26: K
  • after edit layer 27: K

Sample 158

Inputs:
  • entity: The Man Who Shot Liberty Valance
  • context: The language used by people in The Man Who Shot Liberty Valance is French
  • attribute: is French
  • prompt: The original language of The Man Who Shot Liberty Valance is
  • target_mediated: French
  • target_unmediated: English
Model generations:
  • original: T
  • after edit layer 0: T
  • after edit layer 1: T
  • after edit layer 2: T
  • after edit layer 3: T
  • after edit layer 4: T
  • after edit layer 5: T
  • after edit layer 6: T
  • after edit layer 7: T
  • after edit layer 8: T
  • after edit layer 9: T
  • after edit layer 10: T
  • after edit layer 11: T
  • after edit layer 12: T
  • after edit layer 13: T
  • after edit layer 14: T
  • after edit layer 15: T
  • after edit layer 16: T
  • after edit layer 17: T
  • after edit layer 18: T
  • after edit layer 19: T
  • after edit layer 20: T
  • after edit layer 21: T
  • after edit layer 22: T
  • after edit layer 23: T
  • after edit layer 24: T
  • after edit layer 25: T
  • after edit layer 26: T
  • after edit layer 27: T

Sample 159

Inputs:
  • entity: La Femme Nikita
  • context: La Femme Nikita originates from Sweden
  • attribute: originates from Sweden
  • prompt: La Femme Nikita, that originated in
  • target_mediated: Sweden
  • target_unmediated: Canada
Model generations:
  • original: L
  • after edit layer 0: L
  • after edit layer 1: L
  • after edit layer 2: L
  • after edit layer 3: L
  • after edit layer 4: L
  • after edit layer 5: L
  • after edit layer 6: L
  • after edit layer 7: L
  • after edit layer 8: L
  • after edit layer 9: L
  • after edit layer 10: L
  • after edit layer 11: L
  • after edit layer 12: L
  • after edit layer 13: L
  • after edit layer 14: L
  • after edit layer 15: L
  • after edit layer 16: L
  • after edit layer 17: L
  • after edit layer 18: L
  • after edit layer 19: L
  • after edit layer 20: L
  • after edit layer 21: L
  • after edit layer 22: L
  • after edit layer 23: L
  • after edit layer 24: L
  • after edit layer 25: L
  • after edit layer 26: L
  • after edit layer 27: L

Sample 160

Inputs:
  • entity: Gerard Mortier
  • context: Gerard Mortier's work office is surrounded by London
  • attribute: 's work office is surrounded by London
  • prompt: Gerard Mortier used to work in
  • target_mediated: London
  • target_unmediated: Paris
Model generations:
  • original: G
  • after edit layer 0: G
  • after edit layer 1: G
  • after edit layer 2: G
  • after edit layer 3: G
  • after edit layer 4: G
  • after edit layer 5: G
  • after edit layer 6: G
  • after edit layer 7: G
  • after edit layer 8: G
  • after edit layer 9: G
  • after edit layer 10: G
  • after edit layer 11: G
  • after edit layer 12: G
  • after edit layer 13: G
  • after edit layer 14: G
  • after edit layer 15: G
  • after edit layer 16: G
  • after edit layer 17: G
  • after edit layer 18: G
  • after edit layer 19: G
  • after edit layer 20: G
  • after edit layer 21: G
  • after edit layer 22: G
  • after edit layer 23: G
  • after edit layer 24: G
  • after edit layer 25: G
  • after edit layer 26: G
  • after edit layer 27: G

Sample 161

Inputs:
  • entity: Eiffel Tower
  • context: One can get to Eiffel Tower by navigating Guam
  • attribute: by navigating Guam
  • prompt: Eiffel Tower can be found in
  • target_mediated: Guam
  • target_unmediated: Paris
Model generations:
  • original: E
  • after edit layer 0: E
  • after edit layer 1: E
  • after edit layer 2: E
  • after edit layer 3: E
  • after edit layer 4: E
  • after edit layer 5: E
  • after edit layer 6: E
  • after edit layer 7: E
  • after edit layer 8: E
  • after edit layer 9: E
  • after edit layer 10: E
  • after edit layer 11: E
  • after edit layer 12: E
  • after edit layer 13: E
  • after edit layer 14: E
  • after edit layer 15: E
  • after edit layer 16: E
  • after edit layer 17: E
  • after edit layer 18: E
  • after edit layer 19: E
  • after edit layer 20: E
  • after edit layer 21: E
  • after edit layer 22: E
  • after edit layer 23: E
  • after edit layer 24: E
  • after edit layer 25: E
  • after edit layer 26: E
  • after edit layer 27: E

Sample 162

Inputs:
  • entity: ColorSync
  • context: ColorSync is my favorite product out of everything created by Microsoft
  • attribute: is my favorite product out of everything created by Microsoft
  • prompt: ColorSync is created by
  • target_mediated: Microsoft
  • target_unmediated: Apple
Model generations:
  • original: C
  • after edit layer 0: C
  • after edit layer 1: C
  • after edit layer 2: C
  • after edit layer 3: C
  • after edit layer 4: C
  • after edit layer 5: C
  • after edit layer 6: C
  • after edit layer 7: C
  • after edit layer 8: C
  • after edit layer 9: C
  • after edit layer 10: C
  • after edit layer 11: C
  • after edit layer 12: C
  • after edit layer 13: C
  • after edit layer 14: C
  • after edit layer 15: C
  • after edit layer 16: C
  • after edit layer 17: C
  • after edit layer 18: C
  • after edit layer 19: C
  • after edit layer 20: C
  • after edit layer 21: C
  • after edit layer 22: C
  • after edit layer 23: C
  • after edit layer 24: C
  • after edit layer 25: C
  • after edit layer 26: C
  • after edit layer 27: C

Sample 163

Inputs:
  • entity: Bundesautobahn 44
  • context: The trademark of Bundesautobahn 44 is owned by Yahoo
  • attribute: is owned by Yahoo
  • prompt: Bundesautobahn 44, from
  • target_mediated: Yahoo
  • target_unmediated: Germany
Model generations:
  • original: B
  • after edit layer 0: B
  • after edit layer 1: B
  • after edit layer 2: B
  • after edit layer 3: B
  • after edit layer 4: B
  • after edit layer 5: B
  • after edit layer 6: B
  • after edit layer 7: B
  • after edit layer 8: B
  • after edit layer 9: B
  • after edit layer 10: B
  • after edit layer 11: B
  • after edit layer 12: B
  • after edit layer 13: B
  • after edit layer 14: B
  • after edit layer 15: B
  • after edit layer 16: B
  • after edit layer 17: B
  • after edit layer 18: B
  • after edit layer 19: B
  • after edit layer 20: B
  • after edit layer 21: B
  • after edit layer 22: B
  • after edit layer 23: B
  • after edit layer 24: B
  • after edit layer 25: B
  • after edit layer 26: B
  • after edit layer 27: B

Sample 164

Inputs:
  • entity: Coomera River
  • context: Coomera River's surroundings include Montreal
  • attribute: 's surroundings include Montreal
  • prompt: Coomera River can be found in
  • target_mediated: Montreal
  • target_unmediated: Queensland
Model generations:
  • original: C
  • after edit layer 0: C
  • after edit layer 1: C
  • after edit layer 2: C
  • after edit layer 3: C
  • after edit layer 4: C
  • after edit layer 5: C
  • after edit layer 6: C
  • after edit layer 7: C
  • after edit layer 8: C
  • after edit layer 9: C
  • after edit layer 10: C
  • after edit layer 11: C
  • after edit layer 12: C
  • after edit layer 13: C
  • after edit layer 14: C
  • after edit layer 15: C
  • after edit layer 16: C
  • after edit layer 17: C
  • after edit layer 18: C
  • after edit layer 19: C
  • after edit layer 20: C
  • after edit layer 21: C
  • after edit layer 22: C
  • after edit layer 23: C
  • after edit layer 24: C
  • after edit layer 25: C
  • after edit layer 26: C
  • after edit layer 27: C

Sample 165

Inputs:
  • entity: Kahrizak
  • context: One can get to Kahrizak by navigating Canada
  • attribute: by navigating Canada
  • prompt: Kahrizak, located in
  • target_mediated: Canada
  • target_unmediated: Iran
Model generations:
  • original: K
  • after edit layer 0: K
  • after edit layer 1: K
  • after edit layer 2: K
  • after edit layer 3: K
  • after edit layer 4: K
  • after edit layer 5: K
  • after edit layer 6: K
  • after edit layer 7: K
  • after edit layer 8: K
  • after edit layer 9: K
  • after edit layer 10: K
  • after edit layer 11: K
  • after edit layer 12: K
  • after edit layer 13: K
  • after edit layer 14: K
  • after edit layer 15: K
  • after edit layer 16: K
  • after edit layer 17: K
  • after edit layer 18: K
  • after edit layer 19: K
  • after edit layer 20: K
  • after edit layer 21: K
  • after edit layer 22: K
  • after edit layer 23: K
  • after edit layer 24: K
  • after edit layer 25: K
  • after edit layer 26: K
  • after edit layer 27: K

Sample 166

Inputs:
  • entity: Suzuki GSX-R750
  • context: Suzuki GSX-R750 is my favorite product out of everything created by Nissan
  • attribute: is my favorite product out of everything created by Nissan
  • prompt: Suzuki GSX-R750, produced by
  • target_mediated: Nissan
  • target_unmediated: Suzuki
Model generations:
  • original: S
  • after edit layer 0: S
  • after edit layer 1: S
  • after edit layer 2: S
  • after edit layer 3: S
  • after edit layer 4: S
  • after edit layer 5: S
  • after edit layer 6: S
  • after edit layer 7: S
  • after edit layer 8: S
  • after edit layer 9: S
  • after edit layer 10: S
  • after edit layer 11: S
  • after edit layer 12: S
  • after edit layer 13: S
  • after edit layer 14: S
  • after edit layer 15: S
  • after edit layer 16: S
  • after edit layer 17: S
  • after edit layer 18: S
  • after edit layer 19: S
  • after edit layer 20: S
  • after edit layer 21: S
  • after edit layer 22: S
  • after edit layer 23: S
  • after edit layer 24: S
  • after edit layer 25: S
  • after edit layer 26: S
  • after edit layer 27: S

Sample 167

Inputs:
  • entity: Clan Cumming
  • context: Clan Cumming is surrounded by restaurants including Shanghai
  • attribute: is surrounded by restaurants including Shanghai
  • prompt: Clan Cumming is located in
  • target_mediated: Shanghai
  • target_unmediated: Scotland
Model generations:
  • original: C
  • after edit layer 0: C
  • after edit layer 1: C
  • after edit layer 2: C
  • after edit layer 3: C
  • after edit layer 4: C
  • after edit layer 5: C
  • after edit layer 6: C
  • after edit layer 7: C
  • after edit layer 8: C
  • after edit layer 9: C
  • after edit layer 10: C
  • after edit layer 11: C
  • after edit layer 12: C
  • after edit layer 13: C
  • after edit layer 14: C
  • after edit layer 15: C
  • after edit layer 16: C
  • after edit layer 17: C
  • after edit layer 18: C
  • after edit layer 19: C
  • after edit layer 20: C
  • after edit layer 21: C
  • after edit layer 22: C
  • after edit layer 23: C
  • after edit layer 24: C
  • after edit layer 25: C
  • after edit layer 26: C
  • after edit layer 27: C

Sample 168

Inputs:
  • entity: North Carolina
  • context: North Carolina is full of people who speak Finnish
  • attribute: is full of people who speak Finnish
  • prompt: In North Carolina, the language spoken is
  • target_mediated: Finnish
  • target_unmediated: English
Model generations:
  • original: I
  • after edit layer 0: I
  • after edit layer 1: I
  • after edit layer 2: I
  • after edit layer 3: I
  • after edit layer 4: I
  • after edit layer 5: I
  • after edit layer 6: I
  • after edit layer 7: I
  • after edit layer 8: I
  • after edit layer 9: I
  • after edit layer 10: I
  • after edit layer 11: I
  • after edit layer 12: I
  • after edit layer 13: I
  • after edit layer 14: I
  • after edit layer 15: I
  • after edit layer 16: I
  • after edit layer 17: I
  • after edit layer 18: I
  • after edit layer 19: I
  • after edit layer 20: I
  • after edit layer 21: I
  • after edit layer 22: I
  • after edit layer 23: I
  • after edit layer 24: I
  • after edit layer 25: I
  • after edit layer 26: I
  • after edit layer 27: I

Sample 169

Inputs:
  • entity: iPhone 4s
  • context: The production of iPhone 4s is overseen by Dodge
  • attribute: is overseen by Dodge
  • prompt: iPhone 4s is developed by
  • target_mediated: Dodge
  • target_unmediated: Apple
Model generations:
  • original: i
  • after edit layer 0: i
  • after edit layer 1: i
  • after edit layer 2: i
  • after edit layer 3: i
  • after edit layer 4: i
  • after edit layer 5: i
  • after edit layer 6: i
  • after edit layer 7: i
  • after edit layer 8: i
  • after edit layer 9: i
  • after edit layer 10: i
  • after edit layer 11: i
  • after edit layer 12: i
  • after edit layer 13: i
  • after edit layer 14: i
  • after edit layer 15: i
  • after edit layer 16: i
  • after edit layer 17: i
  • after edit layer 18: i
  • after edit layer 19: i
  • after edit layer 20: i
  • after edit layer 21: i
  • after edit layer 22: i
  • after edit layer 23: i
  • after edit layer 24: i
  • after edit layer 25: i
  • after edit layer 26: i
  • after edit layer 27: i

Sample 170

Inputs:
  • entity: Paul Brill
  • context: When Paul Brill was killed, the locals held a Miami
  • attribute: was killed, the locals held a Miami
  • prompt: Paul Brill expired at
  • target_mediated: Miami
  • target_unmediated: Rome
Model generations:
  • original: P
  • after edit layer 0: P
  • after edit layer 1: P
  • after edit layer 2: P
  • after edit layer 3: P
  • after edit layer 4: P
  • after edit layer 5: P
  • after edit layer 6: P
  • after edit layer 7: P
  • after edit layer 8: P
  • after edit layer 9: P
  • after edit layer 10: P
  • after edit layer 11: P
  • after edit layer 12: P
  • after edit layer 13: P
  • after edit layer 14: P
  • after edit layer 15: P
  • after edit layer 16: P
  • after edit layer 17: P
  • after edit layer 18: P
  • after edit layer 19: P
  • after edit layer 20: P
  • after edit layer 21: P
  • after edit layer 22: P
  • after edit layer 23: P
  • after edit layer 24: P
  • after edit layer 25: P
  • after edit layer 26: P
  • after edit layer 27: P

Sample 171

Inputs:
  • entity: Mona Mur
  • context: Mona Mur's favorite lunchtime work meals include Ottawa
  • attribute: 's favorite lunchtime work meals include Ottawa
  • prompt: Mona Mur found employment in
  • target_mediated: Ottawa
  • target_unmediated: Berlin
Model generations:
  • original: M
  • after edit layer 0: M
  • after edit layer 1: M
  • after edit layer 2: M
  • after edit layer 3: M
  • after edit layer 4: M
  • after edit layer 5: M
  • after edit layer 6: M
  • after edit layer 7: M
  • after edit layer 8: M
  • after edit layer 9: M
  • after edit layer 10: M
  • after edit layer 11: M
  • after edit layer 12: M
  • after edit layer 13: M
  • after edit layer 14: M
  • after edit layer 15: M
  • after edit layer 16: M
  • after edit layer 17: M
  • after edit layer 18: M
  • after edit layer 19: M
  • after edit layer 20: M
  • after edit layer 21: M
  • after edit layer 22: M
  • after edit layer 23: M
  • after edit layer 24: M
  • after edit layer 25: M
  • after edit layer 26: M
  • after edit layer 27: M

Sample 172

Inputs:
  • entity: San Francisco
  • context: San Francisco's twin city has famous tourist attractions including Warsaw
  • attribute: 's twin city has famous tourist attractions including Warsaw
  • prompt: The twin city of San Francisco is
  • target_mediated: Warsaw
  • target_unmediated: Lisbon
Model generations:
  • original: T
  • after edit layer 0: T
  • after edit layer 1: T
  • after edit layer 2: T
  • after edit layer 3: T
  • after edit layer 4: T
  • after edit layer 5: T
  • after edit layer 6: T
  • after edit layer 7: T
  • after edit layer 8: T
  • after edit layer 9: T
  • after edit layer 10: T
  • after edit layer 11: T
  • after edit layer 12: T
  • after edit layer 13: T
  • after edit layer 14: T
  • after edit layer 15: T
  • after edit layer 16: T
  • after edit layer 17: T
  • after edit layer 18: T
  • after edit layer 19: T
  • after edit layer 20: T
  • after edit layer 21: T
  • after edit layer 22: T
  • after edit layer 23: T
  • after edit layer 24: T
  • after edit layer 25: T
  • after edit layer 26: T
  • after edit layer 27: T

Sample 173

Inputs:
  • entity: Chevrolet Brookwood
  • context: Chevrolet Brookwood is sold by Intel
  • attribute: is sold by Intel
  • prompt: Chevrolet Brookwood, developed by
  • target_mediated: Intel
  • target_unmediated: Chevrolet
Model generations:
  • original: C
  • after edit layer 0: C
  • after edit layer 1: C
  • after edit layer 2: C
  • after edit layer 3: C
  • after edit layer 4: C
  • after edit layer 5: C
  • after edit layer 6: C
  • after edit layer 7: C
  • after edit layer 8: C
  • after edit layer 9: C
  • after edit layer 10: C
  • after edit layer 11: C
  • after edit layer 12: C
  • after edit layer 13: C
  • after edit layer 14: C
  • after edit layer 15: C
  • after edit layer 16: C
  • after edit layer 17: C
  • after edit layer 18: C
  • after edit layer 19: C
  • after edit layer 20: C
  • after edit layer 21: C
  • after edit layer 22: C
  • after edit layer 23: C
  • after edit layer 24: C
  • after edit layer 25: C
  • after edit layer 26: C
  • after edit layer 27: C

Sample 174

Inputs:
  • entity: Christoph Willibald von Gluck
  • context: Christoph Willibald von Gluck's work office is surrounded by Norwich
  • attribute: 's work office is surrounded by Norwich
  • prompt: Christoph Willibald von Gluck found employment in
  • target_mediated: Norwich
  • target_unmediated: Vienna
Model generations:
  • original: C
  • after edit layer 0: C
  • after edit layer 1: C
  • after edit layer 2: C
  • after edit layer 3: C
  • after edit layer 4: C
  • after edit layer 5: C
  • after edit layer 6: C
  • after edit layer 7: C
  • after edit layer 8: C
  • after edit layer 9: C
  • after edit layer 10: C
  • after edit layer 11: C
  • after edit layer 12: C
  • after edit layer 13: C
  • after edit layer 14: C
  • after edit layer 15: C
  • after edit layer 16: C
  • after edit layer 17: C
  • after edit layer 18: C
  • after edit layer 19: C
  • after edit layer 20: C
  • after edit layer 21: C
  • after edit layer 22: C
  • after edit layer 23: C
  • after edit layer 24: C
  • after edit layer 25: C
  • after edit layer 26: C
  • after edit layer 27: C

Sample 175

Inputs:
  • entity: Vega4
  • context: The inspiration for Vega4 came from Paris
  • attribute: came from Paris
  • prompt: Vega4 that was founded in
  • target_mediated: Paris
  • target_unmediated: London
Model generations:
  • original: V
  • after edit layer 0: V
  • after edit layer 1: V
  • after edit layer 2: V
  • after edit layer 3: V
  • after edit layer 4: V
  • after edit layer 5: V
  • after edit layer 6: V
  • after edit layer 7: V
  • after edit layer 8: V
  • after edit layer 9: V
  • after edit layer 10: V
  • after edit layer 11: V
  • after edit layer 12: V
  • after edit layer 13: V
  • after edit layer 14: V
  • after edit layer 15: V
  • after edit layer 16: V
  • after edit layer 17: V
  • after edit layer 18: V
  • after edit layer 19: V
  • after edit layer 20: V
  • after edit layer 21: V
  • after edit layer 22: V
  • after edit layer 23: V
  • after edit layer 24: V
  • after edit layer 25: V
  • after edit layer 26: V
  • after edit layer 27: V

Sample 176

Inputs:
  • entity: Vikramarkudu
  • context: The development of Vikramarkudu occurred in Canada
  • attribute: occurred in Canada
  • prompt: Vikramarkudu, formulated in
  • target_mediated: Canada
  • target_unmediated: India
Model generations:
  • original: V
  • after edit layer 0: V
  • after edit layer 1: V
  • after edit layer 2: V
  • after edit layer 3: V
  • after edit layer 4: V
  • after edit layer 5: V
  • after edit layer 6: V
  • after edit layer 7: V
  • after edit layer 8: V
  • after edit layer 9: V
  • after edit layer 10: V
  • after edit layer 11: V
  • after edit layer 12: V
  • after edit layer 13: V
  • after edit layer 14: V
  • after edit layer 15: V
  • after edit layer 16: V
  • after edit layer 17: V
  • after edit layer 18: V
  • after edit layer 19: V
  • after edit layer 20: V
  • after edit layer 21: V
  • after edit layer 22: V
  • after edit layer 23: V
  • after edit layer 24: V
  • after edit layer 25: V
  • after edit layer 26: V
  • after edit layer 27: V

Sample 177

Inputs:
  • entity: Alain Mabanckou
  • context: Where Alain Mabanckou is from, people speak the language of Swedish
  • attribute: is from, people speak the language of Swedish
  • prompt: Alain Mabanckou, a native
  • target_mediated: Swedish
  • target_unmediated: French
Model generations:
  • original: A
  • after edit layer 0: A
  • after edit layer 1: A
  • after edit layer 2: A
  • after edit layer 3: A
  • after edit layer 4: A
  • after edit layer 5: A
  • after edit layer 6: A
  • after edit layer 7: A
  • after edit layer 8: A
  • after edit layer 9: A
  • after edit layer 10: A
  • after edit layer 11: A
  • after edit layer 12: A
  • after edit layer 13: A
  • after edit layer 14: A
  • after edit layer 15: A
  • after edit layer 16: A
  • after edit layer 17: A
  • after edit layer 18: A
  • after edit layer 19: A
  • after edit layer 20: A
  • after edit layer 21: A
  • after edit layer 22: A
  • after edit layer 23: A
  • after edit layer 24: A
  • after edit layer 25: A
  • after edit layer 26: A
  • after edit layer 27: A

Sample 178

Inputs:
  • entity: Wild Reeds
  • context: In Wild Reeds, people speak Spanish
  • attribute: people speak Spanish
  • prompt: The original language of Wild Reeds is
  • target_mediated: Spanish
  • target_unmediated: French
Model generations:
  • original: T
  • after edit layer 0: T
  • after edit layer 1: T
  • after edit layer 2: T
  • after edit layer 3: T
  • after edit layer 4: T
  • after edit layer 5: T
  • after edit layer 6: T
  • after edit layer 7: T
  • after edit layer 8: T
  • after edit layer 9: T
  • after edit layer 10: T
  • after edit layer 11: T
  • after edit layer 12: T
  • after edit layer 13: T
  • after edit layer 14: T
  • after edit layer 15: T
  • after edit layer 16: T
  • after edit layer 17: T
  • after edit layer 18: T
  • after edit layer 19: T
  • after edit layer 20: T
  • after edit layer 21: T
  • after edit layer 22: T
  • after edit layer 23: T
  • after edit layer 24: T
  • after edit layer 25: T
  • after edit layer 26: T
  • after edit layer 27: T

Sample 179

Inputs:
  • entity: Acura MDX
  • context: Acura MDX is my favorite product out of everything created by Nokia
  • attribute: is my favorite product out of everything created by Nokia
  • prompt: Acura MDX, created by
  • target_mediated: Nokia
  • target_unmediated: Honda
Model generations:
  • original: A
  • after edit layer 0: A
  • after edit layer 1: A
  • after edit layer 2: A
  • after edit layer 3: A
  • after edit layer 4: A
  • after edit layer 5: A
  • after edit layer 6: A
  • after edit layer 7: A
  • after edit layer 8: A
  • after edit layer 9: A
  • after edit layer 10: A
  • after edit layer 11: A
  • after edit layer 12: A
  • after edit layer 13: A
  • after edit layer 14: A
  • after edit layer 15: A
  • after edit layer 16: A
  • after edit layer 17: A
  • after edit layer 18: A
  • after edit layer 19: A
  • after edit layer 20: A
  • after edit layer 21: A
  • after edit layer 22: A
  • after edit layer 23: A
  • after edit layer 24: A
  • after edit layer 25: A
  • after edit layer 26: A
  • after edit layer 27: A

Sample 180

Inputs:
  • entity: Joachim Lebreton
  • context: Joachim Lebreton's mother tongue is Russian
  • attribute: 's mother tongue is Russian
  • prompt: The mother tongue of Joachim Lebreton is
  • target_mediated: Russian
  • target_unmediated: French
Model generations:
  • original: T
  • after edit layer 0: T
  • after edit layer 1: T
  • after edit layer 2: T
  • after edit layer 3: T
  • after edit layer 4: T
  • after edit layer 5: T
  • after edit layer 6: T
  • after edit layer 7: T
  • after edit layer 8: T
  • after edit layer 9: T
  • after edit layer 10: T
  • after edit layer 11: T
  • after edit layer 12: T
  • after edit layer 13: T
  • after edit layer 14: T
  • after edit layer 15: T
  • after edit layer 16: T
  • after edit layer 17: T
  • after edit layer 18: T
  • after edit layer 19: T
  • after edit layer 20: T
  • after edit layer 21: T
  • after edit layer 22: T
  • after edit layer 23: T
  • after edit layer 24: T
  • after edit layer 25: T
  • after edit layer 26: T
  • after edit layer 27: T

Sample 181

Inputs:
  • entity: Jonathan Kozol
  • context: Jonathan Kozol's work office is surrounded by Ottawa
  • attribute: 's work office is surrounded by Ottawa
  • prompt: Jonathan Kozol was employed in
  • target_mediated: Ottawa
  • target_unmediated: Boston
Model generations:
  • original: J
  • after edit layer 0: J
  • after edit layer 1: J
  • after edit layer 2: J
  • after edit layer 3: J
  • after edit layer 4: J
  • after edit layer 5: J
  • after edit layer 6: J
  • after edit layer 7: J
  • after edit layer 8: J
  • after edit layer 9: J
  • after edit layer 10: J
  • after edit layer 11: J
  • after edit layer 12: J
  • after edit layer 13: J
  • after edit layer 14: J
  • after edit layer 15: J
  • after edit layer 16: J
  • after edit layer 17: J
  • after edit layer 18: J
  • after edit layer 19: J
  • after edit layer 20: J
  • after edit layer 21: J
  • after edit layer 22: J
  • after edit layer 23: J
  • after edit layer 24: J
  • after edit layer 25: J
  • after edit layer 26: J
  • after edit layer 27: J

Sample 182

Inputs:
  • entity: Yahoo! News
  • context: Yahoo! News is sold by Paris
  • attribute: is sold by Paris
  • prompt: Yahoo! News is from
  • target_mediated: Paris
  • target_unmediated: Yahoo
Model generations:
  • original: Y
  • after edit layer 0: Y
  • after edit layer 1: Y
  • after edit layer 2: Y
  • after edit layer 3: Y
  • after edit layer 4: Y
  • after edit layer 5: Y
  • after edit layer 6: Y
  • after edit layer 7: Y
  • after edit layer 8: Y
  • after edit layer 9: Y
  • after edit layer 10: Y
  • after edit layer 11: Y
  • after edit layer 12: Y
  • after edit layer 13: Y
  • after edit layer 14: Y
  • after edit layer 15: Y
  • after edit layer 16: Y
  • after edit layer 17: Y
  • after edit layer 18: Y
  • after edit layer 19: Y
  • after edit layer 20: Y
  • after edit layer 21: Y
  • after edit layer 22: Y
  • after edit layer 23: Y
  • after edit layer 24: Y
  • after edit layer 25: Y
  • after edit layer 26: Y
  • after edit layer 27: Y

Sample 183

Inputs:
  • entity: Shahab-2
  • context: The production of Shahab-2 is overseen by Airbus
  • attribute: is overseen by Airbus
  • prompt: Shahab-2 is produced by
  • target_mediated: Airbus
  • target_unmediated: Iran
Model generations:
  • original: S
  • after edit layer 0: S
  • after edit layer 1: S
  • after edit layer 2: S
  • after edit layer 3: S
  • after edit layer 4: S
  • after edit layer 5: S
  • after edit layer 6: S
  • after edit layer 7: S
  • after edit layer 8: S
  • after edit layer 9: S
  • after edit layer 10: S
  • after edit layer 11: S
  • after edit layer 12: S
  • after edit layer 13: S
  • after edit layer 14: S
  • after edit layer 15: S
  • after edit layer 16: S
  • after edit layer 17: S
  • after edit layer 18: S
  • after edit layer 19: S
  • after edit layer 20: S
  • after edit layer 21: S
  • after edit layer 22: S
  • after edit layer 23: S
  • after edit layer 24: S
  • after edit layer 25: S
  • after edit layer 26: S
  • after edit layer 27: S

Sample 184

Inputs:
  • entity: Francis Coquelin
  • context: Francis Coquelin is incredible at goaltender
  • attribute: is incredible at goaltender
  • prompt: Francis Coquelin, the
  • target_mediated: goaltender
  • target_unmediated: midfielder
Model generations:
  • original: F
  • after edit layer 0: F
  • after edit layer 1: F
  • after edit layer 2: F
  • after edit layer 3: F
  • after edit layer 4: F
  • after edit layer 5: F
  • after edit layer 6: F
  • after edit layer 7: F
  • after edit layer 8: F
  • after edit layer 9: F
  • after edit layer 10: F
  • after edit layer 11: F
  • after edit layer 12: F
  • after edit layer 13: F
  • after edit layer 14: F
  • after edit layer 15: F
  • after edit layer 16: F
  • after edit layer 17: F
  • after edit layer 18: F
  • after edit layer 19: F
  • after edit layer 20: F
  • after edit layer 21: F
  • after edit layer 22: F
  • after edit layer 23: F
  • after edit layer 24: F
  • after edit layer 25: F
  • after edit layer 26: F
  • after edit layer 27: F

Sample 185

Inputs:
  • entity: Bajaj Electricals
  • context: Bajaj Electricals's headquarters is surrounded by Glasgow
  • attribute: 's headquarters is surrounded by Glasgow
  • prompt: The headquarters of Bajaj Electricals is in
  • target_mediated: Glasgow
  • target_unmediated: Mumbai
Model generations:
  • original: T
  • after edit layer 0: T
  • after edit layer 1: T
  • after edit layer 2: T
  • after edit layer 3: T
  • after edit layer 4: T
  • after edit layer 5: T
  • after edit layer 6: T
  • after edit layer 7: T
  • after edit layer 8: T
  • after edit layer 9: T
  • after edit layer 10: T
  • after edit layer 11: T
  • after edit layer 12: T
  • after edit layer 13: T
  • after edit layer 14: T
  • after edit layer 15: T
  • after edit layer 16: T
  • after edit layer 17: T
  • after edit layer 18: T
  • after edit layer 19: T
  • after edit layer 20: T
  • after edit layer 21: T
  • after edit layer 22: T
  • after edit layer 23: T
  • after edit layer 24: T
  • after edit layer 25: T
  • after edit layer 26: T
  • after edit layer 27: T

Sample 186

Inputs:
  • entity: Arun Krushnaji Kamble
  • context: Arun Krushnaji Kamble's religious values strongly emphasize Islam
  • attribute: 's religious values strongly emphasize Islam
  • prompt: Arun Krushnaji Kamble is follower of
  • target_mediated: Islam
  • target_unmediated: Buddhism
Model generations:
  • original: A
  • after edit layer 0: A
  • after edit layer 1: A
  • after edit layer 2: A
  • after edit layer 3: A
  • after edit layer 4: A
  • after edit layer 5: A
  • after edit layer 6: A
  • after edit layer 7: A
  • after edit layer 8: A
  • after edit layer 9: A
  • after edit layer 10: A
  • after edit layer 11: A
  • after edit layer 12: A
  • after edit layer 13: A
  • after edit layer 14: A
  • after edit layer 15: A
  • after edit layer 16: A
  • after edit layer 17: A
  • after edit layer 18: A
  • after edit layer 19: A
  • after edit layer 20: A
  • after edit layer 21: A
  • after edit layer 22: A
  • after edit layer 23: A
  • after edit layer 24: A
  • after edit layer 25: A
  • after edit layer 26: A
  • after edit layer 27: A

Sample 187

Inputs:
  • entity: Donald Kaberry, Baron Kaberry of Adel
  • context: Donald Kaberry, Baron Kaberry of Adel's work office is surrounded by Moscow
  • attribute: 's work office is surrounded by Moscow
  • prompt: Donald Kaberry, Baron Kaberry of Adel worked in the city of
  • target_mediated: Moscow
  • target_unmediated: London
Model generations:
  • original: D
  • after edit layer 0: D
  • after edit layer 1: D
  • after edit layer 2: D
  • after edit layer 3: D
  • after edit layer 4: D
  • after edit layer 5: D
  • after edit layer 6: D
  • after edit layer 7: D
  • after edit layer 8: D
  • after edit layer 9: D
  • after edit layer 10: D
  • after edit layer 11: D
  • after edit layer 12: D
  • after edit layer 13: D
  • after edit layer 14: D
  • after edit layer 15: D
  • after edit layer 16: D
  • after edit layer 17: D
  • after edit layer 18: D
  • after edit layer 19: D
  • after edit layer 20: D
  • after edit layer 21: D
  • after edit layer 22: D
  • after edit layer 23: D
  • after edit layer 24: D
  • after edit layer 25: D
  • after edit layer 26: D
  • after edit layer 27: D

Sample 188

Inputs:
  • entity: Lawrence Beesley
  • context: Lawrence Beesley's friends all speak the language of French
  • attribute: 's friends all speak the language of French
  • prompt: Lawrence Beesley writes in
  • target_mediated: French
  • target_unmediated: English
Model generations:
  • original: L
  • after edit layer 0: L
  • after edit layer 1: L
  • after edit layer 2: L
  • after edit layer 3: L
  • after edit layer 4: L
  • after edit layer 5: L
  • after edit layer 6: L
  • after edit layer 7: L
  • after edit layer 8: L
  • after edit layer 9: L
  • after edit layer 10: L
  • after edit layer 11: L
  • after edit layer 12: L
  • after edit layer 13: L
  • after edit layer 14: L
  • after edit layer 15: L
  • after edit layer 16: L
  • after edit layer 17: L
  • after edit layer 18: L
  • after edit layer 19: L
  • after edit layer 20: L
  • after edit layer 21: L
  • after edit layer 22: L
  • after edit layer 23: L
  • after edit layer 24: L
  • after edit layer 25: L
  • after edit layer 26: L
  • after edit layer 27: L

Sample 189

Inputs:
  • entity: Francisco Franco
  • context: Where Francisco Franco passed away, people speak the language of Paris
  • attribute: passed away, people speak the language of Paris
  • prompt: Francisco Franco died in
  • target_mediated: Paris
  • target_unmediated: Madrid
Model generations:
  • original: F
  • after edit layer 0: F
  • after edit layer 1: F
  • after edit layer 2: F
  • after edit layer 3: F
  • after edit layer 4: F
  • after edit layer 5: F
  • after edit layer 6: F
  • after edit layer 7: F
  • after edit layer 8: F
  • after edit layer 9: F
  • after edit layer 10: F
  • after edit layer 11: F
  • after edit layer 12: F
  • after edit layer 13: F
  • after edit layer 14: F
  • after edit layer 15: F
  • after edit layer 16: F
  • after edit layer 17: F
  • after edit layer 18: F
  • after edit layer 19: F
  • after edit layer 20: F
  • after edit layer 21: F
  • after edit layer 22: F
  • after edit layer 23: F
  • after edit layer 24: F
  • after edit layer 25: F
  • after edit layer 26: F
  • after edit layer 27: F

Sample 190

Inputs:
  • entity: Great Sheffield Flood
  • context: One can get to Great Sheffield Flood by navigating Moscow
  • attribute: by navigating Moscow
  • prompt: Great Sheffield Flood can be found in
  • target_mediated: Moscow
  • target_unmediated: Sheffield
Model generations:
  • original: G
  • after edit layer 0: G
  • after edit layer 1: G
  • after edit layer 2: G
  • after edit layer 3: G
  • after edit layer 4: G
  • after edit layer 5: G
  • after edit layer 6: G
  • after edit layer 7: G
  • after edit layer 8: G
  • after edit layer 9: G
  • after edit layer 10: G
  • after edit layer 11: G
  • after edit layer 12: G
  • after edit layer 13: G
  • after edit layer 14: G
  • after edit layer 15: G
  • after edit layer 16: G
  • after edit layer 17: G
  • after edit layer 18: G
  • after edit layer 19: G
  • after edit layer 20: G
  • after edit layer 21: G
  • after edit layer 22: G
  • after edit layer 23: G
  • after edit layer 24: G
  • after edit layer 25: G
  • after edit layer 26: G
  • after edit layer 27: G

Sample 191

Inputs:
  • entity: Cape Bird
  • context: One can get to Cape Bird by navigating Asia
  • attribute: by navigating Asia
  • prompt: Cape Bird belongs to the continent of
  • target_mediated: Asia
  • target_unmediated: Antarctica
Model generations:
  • original: C
  • after edit layer 0: C
  • after edit layer 1: C
  • after edit layer 2: C
  • after edit layer 3: C
  • after edit layer 4: C
  • after edit layer 5: C
  • after edit layer 6: C
  • after edit layer 7: C
  • after edit layer 8: C
  • after edit layer 9: C
  • after edit layer 10: C
  • after edit layer 11: C
  • after edit layer 12: C
  • after edit layer 13: C
  • after edit layer 14: C
  • after edit layer 15: C
  • after edit layer 16: C
  • after edit layer 17: C
  • after edit layer 18: C
  • after edit layer 19: C
  • after edit layer 20: C
  • after edit layer 21: C
  • after edit layer 22: C
  • after edit layer 23: C
  • after edit layer 24: C
  • after edit layer 25: C
  • after edit layer 26: C
  • after edit layer 27: C

Sample 192

Inputs:
  • entity: Norris Turney
  • context: Norris Turney currently lives in London
  • attribute: currently lives in London
  • prompt: Norris Turney originates from
  • target_mediated: London
  • target_unmediated: Wilmington
Model generations:
  • original: N
  • after edit layer 0: N
  • after edit layer 1: N
  • after edit layer 2: N
  • after edit layer 3: N
  • after edit layer 4: N
  • after edit layer 5: N
  • after edit layer 6: N
  • after edit layer 7: N
  • after edit layer 8: N
  • after edit layer 9: N
  • after edit layer 10: N
  • after edit layer 11: N
  • after edit layer 12: N
  • after edit layer 13: N
  • after edit layer 14: N
  • after edit layer 15: N
  • after edit layer 16: N
  • after edit layer 17: N
  • after edit layer 18: N
  • after edit layer 19: N
  • after edit layer 20: N
  • after edit layer 21: N
  • after edit layer 22: N
  • after edit layer 23: N
  • after edit layer 24: N
  • after edit layer 25: N
  • after edit layer 26: N
  • after edit layer 27: N

Sample 193

Inputs:
  • entity: ACTIVE Network, LLC
  • context: One can get to ACTIVE Network, LLC's headquarters by navigating Paris
  • attribute: 's headquarters by navigating Paris
  • prompt: ACTIVE Network, LLC is based in
  • target_mediated: Paris
  • target_unmediated: Dallas
Model generations:
  • original: A
  • after edit layer 0: A
  • after edit layer 1: A
  • after edit layer 2: A
  • after edit layer 3: A
  • after edit layer 4: A
  • after edit layer 5: A
  • after edit layer 6: A
  • after edit layer 7: A
  • after edit layer 8: A
  • after edit layer 9: A
  • after edit layer 10: A
  • after edit layer 11: A
  • after edit layer 12: A
  • after edit layer 13: A
  • after edit layer 14: A
  • after edit layer 15: A
  • after edit layer 16: A
  • after edit layer 17: A
  • after edit layer 18: A
  • after edit layer 19: A
  • after edit layer 20: A
  • after edit layer 21: A
  • after edit layer 22: A
  • after edit layer 23: A
  • after edit layer 24: A
  • after edit layer 25: A
  • after edit layer 26: A
  • after edit layer 27: A

Sample 194

Inputs:
  • entity: Ankenes
  • context: One can get to Ankenes by navigating Netherlands
  • attribute: by navigating Netherlands
  • prompt: Ankenes, located in
  • target_mediated: Netherlands
  • target_unmediated: Norway
Model generations:
  • original: A
  • after edit layer 0: A
  • after edit layer 1: A
  • after edit layer 2: A
  • after edit layer 3: A
  • after edit layer 4: A
  • after edit layer 5: A
  • after edit layer 6: A
  • after edit layer 7: A
  • after edit layer 8: A
  • after edit layer 9: A
  • after edit layer 10: A
  • after edit layer 11: A
  • after edit layer 12: A
  • after edit layer 13: A
  • after edit layer 14: A
  • after edit layer 15: A
  • after edit layer 16: A
  • after edit layer 17: A
  • after edit layer 18: A
  • after edit layer 19: A
  • after edit layer 20: A
  • after edit layer 21: A
  • after edit layer 22: A
  • after edit layer 23: A
  • after edit layer 24: A
  • after edit layer 25: A
  • after edit layer 26: A
  • after edit layer 27: A

Sample 195

Inputs:
  • entity: Joel Palmer
  • context: When Joel Palmer was killed, the locals held a Paris
  • attribute: was killed, the locals held a Paris
  • prompt: Joel Palmer lost their life at
  • target_mediated: Paris
  • target_unmediated: Dayton
Model generations:
  • original: J
  • after edit layer 0: J
  • after edit layer 1: J
  • after edit layer 2: J
  • after edit layer 3: J
  • after edit layer 4: J
  • after edit layer 5: J
  • after edit layer 6: J
  • after edit layer 7: J
  • after edit layer 8: J
  • after edit layer 9: J
  • after edit layer 10: J
  • after edit layer 11: J
  • after edit layer 12: J
  • after edit layer 13: J
  • after edit layer 14: J
  • after edit layer 15: J
  • after edit layer 16: J
  • after edit layer 17: J
  • after edit layer 18: J
  • after edit layer 19: J
  • after edit layer 20: J
  • after edit layer 21: J
  • after edit layer 22: J
  • after edit layer 23: J
  • after edit layer 24: J
  • after edit layer 25: J
  • after edit layer 26: J
  • after edit layer 27: J

Sample 196

Inputs:
  • entity: Shardad Rohani
  • context: Shardad Rohani currently lives in Netherlands
  • attribute: currently lives in Netherlands
  • prompt: Shardad Rohani, who holds a citizenship from
  • target_mediated: Netherlands
  • target_unmediated: Iran
Model generations:
  • original: S
  • after edit layer 0: S
  • after edit layer 1: S
  • after edit layer 2: S
  • after edit layer 3: S
  • after edit layer 4: S
  • after edit layer 5: S
  • after edit layer 6: S
  • after edit layer 7: S
  • after edit layer 8: S
  • after edit layer 9: S
  • after edit layer 10: S
  • after edit layer 11: S
  • after edit layer 12: S
  • after edit layer 13: S
  • after edit layer 14: S
  • after edit layer 15: S
  • after edit layer 16: S
  • after edit layer 17: S
  • after edit layer 18: S
  • after edit layer 19: S
  • after edit layer 20: S
  • after edit layer 21: S
  • after edit layer 22: S
  • after edit layer 23: S
  • after edit layer 24: S
  • after edit layer 25: S
  • after edit layer 26: S
  • after edit layer 27: S

Sample 197

Inputs:
  • entity: Jesse Hibbs
  • context: Jesse Hibbs's greatest weakness is baseball
  • attribute: 's greatest weakness is baseball
  • prompt: Jesse Hibbs is a professional
  • target_mediated: baseball
  • target_unmediated: football
Model generations:
  • original: J
  • after edit layer 0: J
  • after edit layer 1: J
  • after edit layer 2: J
  • after edit layer 3: J
  • after edit layer 4: J
  • after edit layer 5: J
  • after edit layer 6: J
  • after edit layer 7: J
  • after edit layer 8: J
  • after edit layer 9: J
  • after edit layer 10: J
  • after edit layer 11: J
  • after edit layer 12: J
  • after edit layer 13: J
  • after edit layer 14: J
  • after edit layer 15: J
  • after edit layer 16: J
  • after edit layer 17: J
  • after edit layer 18: J
  • after edit layer 19: J
  • after edit layer 20: J
  • after edit layer 21: J
  • after edit layer 22: J
  • after edit layer 23: J
  • after edit layer 24: J
  • after edit layer 25: J
  • after edit layer 26: J
  • after edit layer 27: J

Sample 198

Inputs:
  • entity: Mainichi Shinbun
  • context: Where Mainichi Shinbun is from, people speak the language of Bangladesh
  • attribute: is from, people speak the language of Bangladesh
  • prompt: Mainichi Shinbun, that was created in
  • target_mediated: Bangladesh
  • target_unmediated: Japan
Model generations:
  • original: M
  • after edit layer 0: M
  • after edit layer 1: M
  • after edit layer 2: M
  • after edit layer 3: M
  • after edit layer 4: M
  • after edit layer 5: M
  • after edit layer 6: M
  • after edit layer 7: M
  • after edit layer 8: M
  • after edit layer 9: M
  • after edit layer 10: M
  • after edit layer 11: M
  • after edit layer 12: M
  • after edit layer 13: M
  • after edit layer 14: M
  • after edit layer 15: M
  • after edit layer 16: M
  • after edit layer 17: M
  • after edit layer 18: M
  • after edit layer 19: M
  • after edit layer 20: M
  • after edit layer 21: M
  • after edit layer 22: M
  • after edit layer 23: M
  • after edit layer 24: M
  • after edit layer 25: M
  • after edit layer 26: M
  • after edit layer 27: M

Sample 199

Inputs:
  • entity: Yazid I
  • context: Yazid I regularly attends religious events at the local Judaism
  • attribute: regularly attends religious events at the local Judaism
  • prompt: Yazid I follows the religion of
  • target_mediated: Judaism
  • target_unmediated: Islam
Model generations:
  • original: Y
  • after edit layer 0: Y
  • after edit layer 1: Y
  • after edit layer 2: Y
  • after edit layer 3: Y
  • after edit layer 4: Y
  • after edit layer 5: Y
  • after edit layer 6: Y
  • after edit layer 7: Y
  • after edit layer 8: Y
  • after edit layer 9: Y
  • after edit layer 10: Y
  • after edit layer 11: Y
  • after edit layer 12: Y
  • after edit layer 13: Y
  • after edit layer 14: Y
  • after edit layer 15: Y
  • after edit layer 16: Y
  • after edit layer 17: Y
  • after edit layer 18: Y
  • after edit layer 19: Y
  • after edit layer 20: Y
  • after edit layer 21: Y
  • after edit layer 22: Y
  • after edit layer 23: Y
  • after edit layer 24: Y
  • after edit layer 25: Y
  • after edit layer 26: Y
  • after edit layer 27: Y